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Abstract—Service-based cloud computing allows applications
to be deployed and managed through third-party provided ser-
vices, making typically virtualised resources available. However,
often there is no direct access to platform-level execution pa-
rameters of a provided service, and only some quality properties
can be directly observed while others remain hidden from the
service consumer. We introduce a controller architecture for
autonomous, self-adaptive anomaly remediation in this semi-
hidden setting. The controller determines the possible causes
of consumer-observed anomalies in an underlying provider-
controlled infrastructure. We use Hidden Markov Models to map
observed performance anomalies into hidden resources, and to
identify the root causes of the observed anomalies. We apply
the model to a clustered computing resource environment that is
based on three layers of aggregated resources.

Index Terms—Cloud Computing; Container Clusters; Hidden
Markov Model; Workload; Anomaly; Performance.

I. INTRODUCTION

Cloud and Edge computing are examples of services being
provided to allow applications to be deployed and managed by
third-party providers that make shared virtualised resources ac-
companied by dynamic management facilities available [2],[3].
Due to the dynamic nature of loads in a distributed cloud and
edge computing setting, consumers may experience anomalies
(e.g., in our case variation in a resource performance) due to
distribution, heterogeneity, or scale of computing that may lead
to performance degradation and potential application failures.
Furthermore, loads might vary over time: (i) changes of the
load on individual resources, (ii) changing workload demand
and prioritisation, (iii) reallocation or removal of resources
in dynamic environments. These may affect the workload of
current system components (container, node, cluster), and may
require rebalancing their workloads. Recent studies [1],[4],[5]
have looked at resource usage, rejuvenation, or analyzing
the correlation between resource consumption and abnormal
behavior of applications. Less attention has been given to the
possibly hidden reason behind the occurrence of an observable
performance degradation (root cause)[23], and how to deal
with the degradation in a hierarchically organised cluster
setting.

To handle these challenges in a shared virtualised en-
vironment, third party providers provide some factors that
can be directly observed (e.g., the response time of service

activations) while others remain hidden from the consumer
(e.g., the reason behind the workload, the possibility to predict
the future load behaviour, the dependency between the affected
nodes and their loads in a cluster).

We differentiate between two types of observation in rela-
tion to workload and response time fluctuations: System states
(anomaly/fault) that refer to anomalous or faulty behavior,
which is hidden from the consumer. This indicates that the
behavior of a system resource is significantly different from
normal behavior. An anomaly in our case may point to an
undesirable behavior of a resource such as overload, or to a
desirable behavior like underload of a system resource, which
can be used as a solution to reduce the load at overloaded
resources. Emission or Observation (observed failure from
these states), which indicates the occurrence of failure result-
ing from a hidden state.

To address this problem, we use Hierarchical Hidden
Markov Models (HHMMs) [8] as a stochastic model to map
the observed failure behavior of a system resource to its
hidden anomaly causes (e.g., overload) through tracking the
detected anomaly to locate its root cause. We implement
the proposed controller for a clustered computing resource
environment. The contribution of this paper is a controller
[7],[6] that automatically detects the anomalous behavior
within a cluster of containers running on cluster nodes, where
a sequence of observations is emitted by the system resource.
The controller remedies the detected anomalies that occur at
the container, node or cluster level. To achieve that this paper:
(i) analysed the possible causes of observable anomalies in an
underlying provider-controlled infrastructure; (ii) defined an
anomaly detection, and analysis controller for a self-adaptive
cluster environment, that automatically manages the resource
workload fluctuations. The paper objective is to introduce the
controller in terms of its architecture and processing activities.

The paper is organized as follows. Section II reviews related
work. Section III explains the motivation behind our work.
Section IV gives an overview of HHMM. Section V explains
the mapping of failure and fault. Section VI explains the
controller architecture. Section VII evaluates it.
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II. RELATED WORK

There are a number of studies that have addressed workload
analysis in dynamic environments [1],[4],[5]. They proposed
various methods for analyzing and modeling workload.

Dullmann [13] provide an online performance anomaly
detection approach that detects anomalies in performance data
based on discrete time series analysis.

Peiris et al. [14] analyze root causes of performance anoma-
lies by combining the correlation and comparative analysis
techniques in distributed environments. Sorkunlu et al. [15]
identify system performance anomalies through analyzing the
correlations in the resource usage data. Wang et al. [5] propose
to model the correlation between workload and the resource
utilization of applications to characterize the system status.

Maurya and Ahmad [16] propose an algorithm that dynam-
ically estimates the load of each node and migrates the task
if necessary. The algorithm migrates the jobs from overloaded
nodes to underloaded ones through working on pair of nodes,
it uses a server node as a hub to transfer the load information
in the network, which may result in overhead at the node.

Moreover, many literatures used HMM and its derivations
to detect anomaly. In [17], the author proposed various
techniques implemented for the detection of anomalies and
intrusions in the network using HMM. In [19] the author
detected faults in real-time embedded systems using HMM
through describing the healthy and faulty states of a system’s
hardware components. In [21], HMM is used to find, which
anomaly is part of the same anomaly injection scenarios.

The objective of this paper is to detect and locate the
anomalous behaviour in containerized cluster environment
[20] through considering the influence of dynamic workloads
on their anomaly detection solutions. The proposed controller
consists of: (1) Monitoring, that collects the performance data
of (services, containers, nodes ’VM’) such as CPU, memory,
and network metrics; (2) Detection, that detects anomalous
behaviour, which is observed in response time of a component;
(3) Identification, which tracks the cause of the detected
anomaly. (4) Recovery, that heals the identified anomalous
components. (5) Anomaly injection, which simulates different
anomalies, and gathers dataset of performance data represent-
ing normal and abnormal conditions.

III. MOTIVATING EXAMPLE

A failure is the inability of a component to perform its
functions with respect to a specified (e.g., performance) re-
quirements [18]. Faults (also called anomalies) are system
properties that describe an exceptional condition occurring in
the system operation that may cause one or more failures [24].

We assume that a failure is a kind of unexpected response
time observed during system component runtime (i.e., observa-
tion), while fluctuations occurring during a resource execution
of a component are considered as faults or anomalies (state of
a hidden component). For example, fluctuations in workload

such as overload faults may cause delay in a system response
time (observed failure).

Generally, the observed metrics do not provide enough
information to identify the cause of an observed failure. For
example, the CPU utilization of a containerized application
is about 30% with 400 users, and it increases to about
70% with 800 users in the normal situation. Obviously, the
system is normal with 800 users. But probably the system
shows anomalous behaviour with 400 users, when the CPU
utilization is about 70%. Thus, it is hard to identify whether
the system is normal or anomaly just based on the CPU
utilization. Thus, specifying a threshold for the utilization
of resource without considering the number of users, will
raise anomalous behaviours. Consequently, it is important to
integrate the data of workload into anomaly detection and
identification solutions. Once provided with a link between
faults (workloads) and failures (response time) emitted from
components, we can also apply a suitable recovery strategy
depending on the type of identified fault.

Thus, a self-adaptation controller will be introduced later in
this paper to automatically manage faults through identifying
the degradation of performance, determining the dependency
between faults and failures, and applying recovery strategies.
We can align the steps of the fault management with the
Monitoring, Analysis, Planning, Execution, and Knowledge
(MAPE-K) control loop as a conceptual framework.

IV. HIERARCHICAL HIDDEN MARKOV MODEL (HHMM)

Hierarchical Hidden Markov Model (HHMM) [8] is a gen-
eralization of the Hidden Markov Model (HMM) that is used
to model domains with hierarchical structure (e.g., intrusion
detection, plan recognition, visual action recognition). HHMM
can characterize the dependency of the workload (e.g., when
at least one of the states is heavy loaded). The states (cluster,
node, container) in HHMM are hidden from the observer and
only the observation space is visible (response time). The
states of HHMM emit sequences rather than a single observa-
tion by a recursive activation of one of the substates (nodes)
of a state (cluster). This substate might also be hierarchically
composed of substates (containers). Each container has an
application that runs on it. In case a node or a container
emit observation, it will be considered a production state. The
states that do not emit observations directly are called internal
states. The activation of a substate by an internal state is a
vertical transition that reflects the dependency between states.
The states at the same level have horizontal transitions. Once
the transition reaches to the End state, the control returns to
the root state of the chain as shown in Figure 1. The edge
direction indicates the dependency between states.

We choose HHMM as every state can be represented as
a multi-levels HMM in order to: (1) show communication
between nodes and containers, (2) demonstrate the impact of
workloads on the resources, (3) track the anomaly cause, and
(4) represent the response time variations that emit from nodes
or containers.
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FIGURE 1. THE HHMM FOR WORKLOAD.

V. FAILURE-TO-FAULT MAPPING

Based on analyzing the log file and monitored metrics from
existing systems, we can obtain knowledge regarding (1) the
dependencies between containers, nodes and clusters; (2) re-
sponse time fluctuations emitted from containers or nodes; (3)
workload fluctuations that cause changes in response time. We
need a mechanism that automatically maps a type of anomaly
to its causes. We can identify different failure-fault cases that
may occur at container, node or cluster level as illustrated in
Figure 2. We focused on addressing the correlation between
workload (overload) and the response time at container, node,
and cluster.

A. Low Response Time Observed at Container Level

There are different reasons that may cause this:

• Case 1.1. Container overload (self-dependency): means
that a container is busy, causing low response times, e.g.,
c1 in N1 has entered into load loop as it tries to execute its
processes while N1 keeps sending requests to it, ignoring
its limited capacity.

• Case 1.2. Container sibling overloaded (internal con-
tainer dependency): this indicates another container c2
in N1 is overloaded. This overloaded container indirectly
affects the other container c1 as there is a communica-
tion between them. For example, c2 has an application
that almost consumes all resources. The container has a
communication with c1. At such situation, when c2 is
overloaded, c1 will go into underload. The reason is that
c2 and c1 share the resources of the same node.

• Case 1.3. Container neighbour overload (external con-
tainer dependency): this happens when a container c3
in N2 is linked to another container c2 in another node
N1. In another case, some containers c3 and c4 in N2

dependent on each other, and container c2 in N1 depends
on c3. In both cases c2 in N1 is badly affected once c3 or
c4 in N2 are heavily loaded. This results in low response
time observed from those containers.

B. Low Response Time Observed at Node Level

There are different reasons that cause such observations:

FIGURE 2. DEPENDENCIES BETWEEN CLUSTER, NODES AND
CONTAINERS.

• Case 2.1. Node overload (self-dependency): generally
node overload happens when a node has low capacity,
many jobs waited to be processed, or problem in network.
Example, N2 has entered into self load due to its limited
capacity, which causes an overload at the container level
as well c3 and c4.

• Case 2.2. External node dependency: occurs when low
response time is observed at node neighbour level, e.g.,
when N2 is overloaded due to low capacity or network
problem, and N1 depends on N2. Such overload may
cause low response time observed at the node level,
which slow the whole operation of a cluster because of
the communication between the two nodes. The reason
behind that is N1 and N2 share the resources of the same
cluster. Thus, when N1 shows a heavier load, it would
affect the performance of N2.

C. Low Response Time Observed at Cluster Level

If a cluster coordinates between all nodes and containers, we
may observe low response time at container and node levels
that cause difficulty at the whole cluster level, e.g., nodes
disconnected or insufficient resources.

• Case 3.1. Communication disconnection may happen due
to problem in the node configuration, e.g., when a node
in the cluster is stopped or disconnected due to failure or
a user disconnect.

• Case 3.2. Resource limitation happens if we create a
cluster with too low capacity which causing low response
time observed at the system level.

The mapping between faults and failures needs to be for-
malised in a model that distinguishes observations and hidden
states. Thus, HHMM is used to reflect the system topology.

VI. SELF-ADAPTIVE CONTROLLER ARCHITECTURE

This section explains the controller architecture (Figure 3).

A. Managed Component Pool

The system under observation consists of a cluster that
is composed of a set of nodes that host containers as the
application components. A node could be a virtual machine
that has a given capacity. The main job of the node is to
assign requests to its containers. Containers are stand-alone,

77Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications



FIGURE 3. THE CONTROLLER ARCHITECTURE.

executable packages of software. Multiple containers can run
on the same node, and share the operating environment with
other containers. Each component either cluster, node, or
container may emit observations. Observations are emissions
of failure from a component resource.

We installed an agent on each node to collect metrics from
the pool, and to expose log files of containers and nodes
to Real-Time/Historical Data storage. The agent adds data
interval function to determine the time interval at which the
data collected belongs. The data interval function specifies the
lower and upper limits for the data arrivals. The response time,
and the state of the component are assigned to each interval.
Moreover, the agent gathers data regarding the workload
(i.e., no. of requests issued to component), and monitored
metrics (i.e., CPU, Memory) to characterize the workload of
components processed in an interval. The agent push the data
to be stored in the Real time/Historical storage to be used by
the Fault Management Model.

B. Fault Management Model

The model is based on the history of the overall system
performance. This can be used to compare the predicted status
with the currently observed one to detect anomalous behaviour.
The fault management model consists of:

a) Detection (Monitor): To detect anomaly, the monitor
collects system data from the Real time/Historical storage.
Then, it checks if there is anomalous behaviour at the managed
components through utilizing spearman’s rank correlation co-
efficient to estimate the dissociation between the response time
and the number of requests (workload). If there is a decrease
in the correlation degree, then the metric is not associated with
the increasing workload, which means the observed variation
in performance isn’t an anomaly. In case the correlation degree
increase, this refers to the existence of anomaly occurred as the
impact of dissociation between the workload and the response
time exceeds a certain value. To achieve that we wrote an
algorithm to be used as a general threshold to highlight the
occurrence of anomaly in the managed pool under different
workloads. We added a unique workload identifier to the group
of workloads in the same period to achieve traceability through
the entire system. We specified that the degree of dissociation

(DD = 15) can be used as an indicator for performance
degradation considering different response time, and different
workloads. The value of DD will be compared against the
monitored metrics (i.e., CPU, Memory utilization) to detect
anomalous behaviour within the system. In case an anomaly
is detected, the controller will move to the fault management
to track the cause of anomaly in the system.

b) Identification (Analysis and Plan): Once there is ap-
pearance of anomaly, we built HHMMs to identify anomalies
in system components as shown in Figure 1.

The HHMM vertically calls one of its substates N2
1 =

{C3
1 , C

3
2}, N2

2 , N2
3 = {C3

3 , C
3
4} with “vertical transition χ”

and d index (superscript), where d = {1, 2, 3}. Since N2
1

is abstract state, it enters its child HMM substates C3
1 and

C3
2 . Since C3

2 is a production state, it emits observations,
and may make horizontal transition γ, with i horizontal index
(subscript), where i = {1, 2, 3, 4}, from C3

1 to C3
4 . Once there

is no another transition, C3
2 transits to the end state End,

which ends the transition for this substate, to return the control
to the calling state N2

1 . Once the control returns to the state
N2

1 , it makes a horizontal transition (if exist) to state N2
2 ,

which horizontally transits to state N2
3 . State N2

3 has substates
C3

3 that transits to C3
4 which may transit back to C3

3 or transit
to the End state. Once all the transitions under this node are
achieved, the control returns to N2

3 . State N2
3 may loop around,

transit back to N2
2 , or enters its End state, which ends the

whole process and returns control to the cluster. The model
can’t horizontally do transition unless it vertically transited.
Further, the internal sates don’t need to have the same number
of substates. It can be seen that N2

1 calls containers C3
1 and C3

2 ,
while N2

2 has no substates. The horizontal transition between
containers reflect the request/reply between the client/server
in our system under test, and the vertical transition refers to
child/parent relationship between containers/node.

The observation O is denoted by Fi = {f1, f2, ..., fn} to
refer to the response time observations sequence (failures). An
observed low response time might reflect workload fluctuation.
This fluctuation in workload is associated with a probabil-
ity that reflects the state transition status from OL to NL
(PFOL→NL) at a failure rate <, which indicates the number
of failures for a N , C or cluster over a period of time.

We used the generalized Baum-Welch algorithm [8] to
train the model by calculating the probabilities of the model
parameters: (1) the horizontal transitions from a state to
another. (2) probability that the O is started to be emitted for
statedi at t. statedi refers to container, node, or cluster. (3) the
O of statedi were emitted and finished at t. (4) the probability
that stated−1 is entered at t before Ot to activate state statedi .
(5) the forward and backward transition from bottom-up.

The output of algorithm will be used to train Viterbi
algorithm to find the anomalous hierarchy of the detected
anomalous states. As shown in ”(1)-(3)”, we recursively calcu-
late = which is the ψ for a time set (t̄ = ψ(t, t+k,Cd

i , C
d−1)),

where ψ is a state list, which is the index of the most
probable production state to be activated by Cd−1 before
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activating Cd
i . t̄ is the time when Cd

i was activated by Cd−1.
The δ is the likelihood of the most probable state sequence
generating (Ot, · · · , O(t+k)) by a recursive activation. The τ is
the transition time at which Cd

i was called by Cd−1. Once all
the recursive transitions are finished and returned to cluster,
we get the most probable hierarchies starting from cluster to
the production states at T period through scanning the sate list
ψ, the states likelihood δ, and transition time τ .

L = max
(1≤r≤Nd

i )

{
δ(t̄, t+ k,Nd+1

r , Nd
i ) a

Nd
i

End

}
(1)

= = max
(1≤y≤Nj−1)

{
δ(t, t̄− 1, Nd

i , N
d−1)aN

d−1

End L
}

(2)

stSeq = max
cluster

{
δ(T, cluster), τ(T, cluster), ψ(T, cluster)

}
(3)

Once we have a trained the model, we compare the detected
hierarchies against the observed one to identify the type of
workload. The hierarchies with the lowest probabilities will
be considered anomaly. Once we detected and identified the
workload type (e.g., OL), a hierarchy of faulty states (e.g.,
cluster, N2

1 , C3
1 and C3

2 ) that are affected by the anomalous
component (C3

1 ) is obtained that reflects observed anomalous
behaviour. We repeat these steps until the probability of the
model states become fixed. Each state is correlated with time
that indicates: the time of it’s activation, it’s activated sub-
states, and the time at which the control returns to the calling
state. The result of the fault management model (anomalous
components) is stored in Knowledge storage. This aid us in the
recovery procedure as the anomalous state will be recovered
first come-first heal.

C. Fault-Failure Recovery Cases

Based on the fault type, we apply a recovery mechanism
that considers the dependencies between components, and
the current component status. The recovery mechanism is
specified based on historic and current observations of a
response time for a container or node and the hidden states
(containers or nodes). The following steps and concerns are
considered by the recovery mechanism:

• Analysis: relies on current and historic observation.
• Observation (failure): indicates the type of observed fail-

ure (e.g., low response time).
• Anomaly (fault): reflects the fault type (e.g., overload).
• Reason: explains the causes of the problem.
• Remedial Action: explains different solutions that can be

applied to solve the problem.
• Requirements: constraint that might apply.

We look at two anomaly cases and suitable recovery strate-
gies, which exemplify recovery strategies for the fault-failure
mapping cases 1.3 and 2.1. These strategies can be applied

based on the observed response time (current and historic
observations) and related faults (hidden states).

1) Container neighbour overload (external container depen-
dency) Analysis: current/historic observations, hidden states
Observation (failure): low response time at the anomalous
container and the dependent one.
Anomaly: overload in one or more containers results in
underload for another container at different node.
Reason: heavily loaded container with external dependent one
(communication)
Remedial Actions: Option 1: Separate the overloaded con-
tainer and the external one depending on it from their nodes.
Then, create a new node containing the separated containers
considering the cluster capacity. Redirect other containers that
in communication to these 2 containers in the new node.
Connect current nodes with the new one and calculate the
probability of the whole model to know the number of
transitions (to avoid the occurrence of overload) and to predict
the future behaviour. Option 2: For the anomalous container,
add a new one to the node that has the anomalous container
to provide fair workload distribution among containers con-
sidering the node resource limits. Or, if the node does not
yet reach the resource limits available, move the overloaded
container to another node with free resource limits. At the end,
update the node. Option 3: create another (MM ) node within
the node with anomalous container behaviour. Next, direct the
communication of current containers to (MM ). We need to
redetermine the probability of the whole model to redistribute
the load between containers. Finally, update the cluster and
the nodes. Option 4: distribute load. Option 5: rescale node.
Option 6: do nothing, this means that the observed failure
relates to regular system maintenance or update happened to
the system. Thus, no recovery option will be applied.
Requirements: need to consider node capacity.

2) Node overload (self-dependency) Analysis: current and
historic observations
Observation (failure): low response time at node level.
Anomaly: overloaded node.
Reason: limited node capacity.
Remedial Actions: Option 1: distribute load. Option 2: rescale
node. Option 3: do nothing.
Requirements: collect information regarding containers and
nodes, consider node capacity and rescale node(s).

D. Recovery Model

The recovery model (Execute stage in MAPE-K) receives
an ordered list of faulty states from the identification step.
It applies a recovery mechanism considering the type of
the identified anomaly and the resource capacity. We have
configured the fault management model to have a specific
number of nodes and containers because increasing the number
of nodes and containers will lead to a large amount of different
recovery actions (Load balancing rules), which reduces model
performance. We are mainly concerned with two workload
anomalies: (1) overload as it reflects anomalous behavior,
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FIGURE 4. HMM FOR RECOVERY ACTIONS.

(2) underload category, as it is considered anomaly but it
represents a solution to migrate load from heavy loaded
component. We define different recovery actions for each fault-
failure case. Consequently, for an identified anomaly case, we
need to select the most appropriate action from the time and
cost perspectives.

The Recover Job Scheduler (RJS) heals the identified
anomaly based on first identified-first heal. It mitigates the
anomalous state, by distributing the load to the underloaded
components considering their status. The recovery actions are
stored in the Knowledge storage to keep track of the number of
applied actions to the identified anomalous component. Before
applying any of the recovery option, ”Restart” option will be
applied to save the cost of trying multiple recovery options if
the component doesn’t reach its restart action number limit.
In case a restart option doesn’t enhance the situation, RJS
checks the existence of underloaded component identified by
the fault management model and stored in the knowledge
storage. If there is underloaded component, the HMM is
trained using the Forward-Backward algorithm to select the
most probable action for the anomalous component as shown
in Figure 4. The states Ai in the model refer to the hidden
recovery actions. The rejuventation hidden state refers to
the restart action, and Pi(r), is the probability of the recovery
actions. We estimated Pi(r) based on computing the maximum
likelihood. The result of the HMM will be, for instance, the
most probable action for anomalous state C3

1 is ’distribute
load’. The RJS apply the selected action to the fault component
in the ”Managed Component Pool”. In case, RJS couldn’t find
underloaded components, the ”pause” action will be applied.
If the number of applied recovery actions for the anomalous
component exceeds a predefined threshold, terminate action
will be applied after backing up the component. For each
component, we further keep a profile of the type of applied
action to enhance the recovery procedure in the future.

a) Metrics for Recovery Plan Determination: In order to
better capture the accuracy of the proposed fault identification,
we estimated the Fault Rate to capture (1) the number of fault
during system execution <(FN), and (2) the overall length of
failure occurrence <(FL) as depicted in ”(4)” and ”(5)”. This
aids us later in reducing the fault/failure occurrence through

providing the best suited recovery mechanism, for instance for
frequent or long-lasting failures. The observed behaviour will
be analysed in terms of failure rates for each state – e.g., low
response times may result from overload states or normal load
states – in order to determine the number of failures observed
for each state and to estimate the total failure numbers for all
the states. We define < as follows:

<(FN) =
No of Detected Faults

Total No of Faults of Resource
(4)

<(FL) =
Total T ime of Observed Failures

Total T ime of Execution of Resource
(5)

The Average Failure Length (AFL), as in ”(6)”, might also
be relevant to judge the relative urgency of recovery. Other
relevant metrics that impact on the decision which strategy to
use, but which we do not detail here, are resilience metrics
addressing recovery times.

AFL =

∑
Time of Failure Occurrence

Number of Observed Failures
(6)

VII. EVALUATION

The proposed framework is run on Kubernetes and Docker
containers. We deployed TPC-W1 benchmark on the contain-
ers to validate the framework. We focused on three types of
faults CPU hog, Network packet loss/latency, and performance
anomaly caused by workload congestion.

A. Environment Set-Up

To evaluate the effectiveness of the proposed framework,
the experiment environment consists of three VMs. Each VM
is equipped with LinuxOS, 3VCPU, 2GB VRAM, Xen 4.11 2,
and an agent. Agents are installed on each VM to collect the
monitoring data from the system (e.g., host metrics, container,
performance metrics, and workloads), and send them to the
Real-Time/Historical storage to be processed by the Monitor.
The VMs are connected through a 100 Mbps network. For
each VM, we deployed two containers, and we run into them
TPC-W benchmark.

TPC-W benchmark is used for resource provisioning, scal-
ability, and capacity planning for e-commerce websites. TPC-
W emulates an online bookstore that consists of 3 tiers: client
application, web server, and database. Each tier is installed on
VM. We didn’t considered the database tier in the anomaly
detection and identification, as a powerful VM should be
dedicated to the database. The CPU and Memory utilization
are gathered from the web server, while the Response time is
measured from client’s end. We ran TPC-W for 300 minutes.
The number of records that we obtained from the TPC-W was
2000 records.

1http://www.tpc.org/tpcw/
2https://xenproject.org/
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We further used docker stats command to obtain a live
data stream for running containers. SignalFX Smart Agent3

monitoring tool is used and configured to observe the runtime
performance of components and their resources. We also used
Heapster4 to group the collected data, and store them in a
time series database using InfluxDB5. The gathered data from
the monitoring tool, and from datasets are stored in the Real-
Time/Historical Data storage to enhance the future anomaly
detection and identification. The gathered dataset is classified
into training and testing datasets 50% for each. The model
training last 150 minutes.

To simulate real anomaly scenarios, script is written to inject
different types of anomalies. The anomaly injection for each
component last 5 minutes. The anomaly scenarios are: (1) CPU
Hog, consume all CPU cycles by employing infinite loops. (2)
Memory Leak, exhausts the component memory. The stress6

tool is used to create pressure on CPU and Memory.

Further, workload contention is generated to test the con-
troller under different workloads. To generate workload, the
TPC-W web server is emulated using client application, which
generates workload (using Remote Browser Emulator) by sim-
ulating a number of user requests that is increased iteratively.
Since the workload is always described by the access behavior,
we consider the container is gradually workloaded within [30-
2000] emulated users requests, and the number of requests is
changed periodically. The client application reports response
time metric, and the web server reports CPU and Memory
utilization. To measure the number of requests and response
(latency), HTTPing7 is installed on each node. Also AWS X-
Ray8 is used to trace of the request through the system.

B. The Detection Assessment

The detection model is evaluated by Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE),
and False Alarm Rate (FAR), which are the commonly used
metrics [25] for evaluating the quality of detection. We further
measured the Number of Correctly Detected Anomaly (CDA)
and Accuracy of Detection (AD).

a) Root Mean Square Error (RMSE): It measures the
differences between the detected value and the observed one
by the model. A smaller RMSE value indicates a more
effective detection scheme.

b) Mean Absolute Percentage Error (MAPE): It mea-
sures the detection accuracy of a model. Both RMSE and
MAPE are negatively-oriented scores, which means lower
values are better.

3https://www.signalfx.com/
4https://github.com/kubernetes-retired/heapster
5https://www.influxdata.com/
6https://linux.die.net/man/1/stress
7https://www.vanheusden.com/httping/
8https://aws.amazon.com/xray/

TABLE I. DETECTION EVALUATION.

Metrics HHMM DBN HTM
RMSE 0.23 0.31 0.26
MAPE 0.14 0.27 0.16
CDA 96.12% 91.38% 94.64%
AC 0.94 0.84 0.91
FAR 0.27 0.46 0.31

c) Number of Correctly Detected Anomaly (CDA): It
measures percentage of the correctly detected anomalies to
the total number of detected anomalies in a given dataset.
High CDA indicates the model is correctly detected anomalous
behaviour.

d) Accuracy of Detection (AD): It measures the com-
pleteness of the correctly detected anomalies to the total
number of anomalies in a given dataset. Higher AD means
that fewer anomaly cases are undetected.

e) False Alarm Rate (FAR): The number of the normal
detected component, which has been misclassified as anoma-
lous by the model.

The efficiency of the model is compared with a Dynamic
Bayesian network (DBN), see Table I. The results show that
the HHMM and HTM model detects anomalous behaviour
with promised results comparing to DBN.

C. The Identification Assessment

The accuracy of the results is compared with Dynamic
Bayesian Network (DBN), and Hierarchical Temporal Mem-
ory (HTM), and it is evaluated based on different metrics
such as: Accuracy of Identification (AI), Number of Correctly
Identified Anomaly (CIA), Number of Incorrectly Identified
Anomaly (IIA), and FAR.

a) Accuracy of Identification (AI): It measures the com-
pleteness of the correctly identified anomalies to the total
number of anomalies in a given dataset. Higher AI means
that fewer anomaly cases are un-identified.

b) Number of Correctly Identified Anomaly (CIA): It is
the number of correct identified anomaly (NCIA) out of the
total set of identification, which is the number of correct
Identification (NCIA) + the number of incorrect Identification
(NICI)). The higher value indicates the model is correctly
identified anomalous component.

CIA =
NCIA

NCIA+NICI
(7)

c) Number of Incorrectly Identified Anomaly (IIA): IIA
is the number of the identified component, which represents an
anomaly but misidentified as normal by the model. The lower
value indicates that the model correctly identified anomaly
component.

IIA =
FN

FN + TP
(8)
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TABLE II. ASSESSMENT OF IDENTIFICATION.

Metrics HHMM DBN HTM
AI 0.94 0.84 0.94
CIA 94.73% 87.67% 93.94%
IIA 4.56% 12.33% 6.07%
FAR 0.12 0.26 0.17

TABLE III. RECOVERY EVALUATION.

Evaluation Metrics Results
RA 99%

MTTR 60 seconds
OA 97%

d) False Alarm Rate (FAR): The number of the normal
identified component, which has been misclassified as anoma-
lous by the model.

FAR =
FP

TN + FP
(9)

The false positive (FP) means the detection/identification of
anomaly is incorrect as the model detects/identifies the normal
behaviour as anomaly. True negative (TN) means the model
can correctly detect and identify normal behaviour as normal.

As shown in Table II, HHMM and HTM achieved promising
results for the identification of anomaly. While the results of
the DBN a little bit decayed for the CIA with approximately
7% than HHMM, and 6% than HTM. Both HHMM and
HTM showed higher identification accuracy as they are able to
identify temporal anomalies in the dataset. The result interferes
that the HHMM is able to link the observed failure to its
hidden workload.

D. The Recovery Assessment

To assess the recovery decisions of the model, we measure:
(1) the Recovery Accuracy (RA) to be the number of success-
fully recovered anomalies to the total number of identified
anomalies, (2) Mean Time to Recovery (MTTR), the average
time that the approach takes to recover starting from the
anomaly injection until recovering it. (3) Over all Accuracy
(OA) to be the number of correct recovered anomalies to the
total number of anomalies. The results in Table III show that
once HMM model is configured properly, it can efficiently
recover the anomalies with an accuracy of 99%.

VIII. CONCLUSIONS

This paper presented a controller architecture for the detec-
tion, and recovery of anomalies in hierarchically organised
clustered computing environments, that reflects recent con-
tainer cluster orchestration tools like Kubernetes or Docker
Swarm. The key objective was to provide an analysis feature,
that maps observable quality concerns onto hidden resources
in a hierarchical clustered environment, and their operation
in order to identify the reason for performance degradations
and other anomalies. From this, a recovery strategy that
removes the workload anomaly, thus removing the observed
performance failure is the second step.

We have proposed to use Hidden Markov Models (HMMs)
to reflect the hierarchical nature of the unobservable resources,
and to support the detection, identification, and recovery of
anomalous behaviours. We have further analysed mappings
between observations and resource usage based on a clustered
container scenario.

The objective of this paper was to introduce the complete
controller architecture with its key processing steps. In the
future, we will complete the current controller prototype, carry
out further experimental evaluations, and also address practical
concerns such as the relevance for microservice architectures
[10].
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