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Abstract— Adaptive and fast-calculating HVAC and climate 

models are gaining increasing importance in the automotive 

development process. Physically motivated thermal models 

achieve high quality results, but have a disadvantage in terms 

of their computing speed due to their complexity. One possible 

approach for the fast and precise simulation of thermal sys-

tems is deep learning with artificial neural networks. This 

paper aims to determine the extent to which neural LSTM are 

suitable for modeling the complex dynamic behavior of vehicle 

air conditioning. For this purpose, a physical reference model 

of a passenger car air conditioning system including a vehicle 

cabin is set up in the simulation environment Dymola with the 

component library TIL Suite. Furthermore, a model structure 

of a LSTM -based deep neural network to map the dynamic 

thermal behavior correctly is proposed. For the purpose of 

training the ANN, the overall system has been broken down 

into subsystems. The subsystems are individually trained open-

loop and then linked to form a closed-loop overall model. For 

evaluation purposes, models with the same model structure but 

based on feed forward network (FFN) architectures are im-

plemented, trained and tested. 

Keywords - BEV; Applied Machine Learning; HVAC; 

LSTM; ANN;  

I. INTRODUCTION  

In the automotive development process, simulations of 

the vehicle climate are required in order to test components, 

assemblies, system concepts and control variants in a cost-

effective and time-efficient manner. Furthermore, simula-

tions of the vehicle’s climatization systems are currently 

gaining more and more of a focus on research, as they are 

used within Model-Predictive Controllers (MPC) to opti-

mize HVAC control. 

Previous work has shown that physical modeling shows 

good results and provides a good picture of real thermody-

namic processes. A number of studies have focused on a 

detailed physical modeling of the cabin climatization for 

simulation purposes [1]-[14]. In addition to the vehicle 

interior temperature, energy consumption, air humidity and, 

in some cases, air quality and thermal comfort are also cal-

culated in the form of a Predicted Mean Vote (PMV). With 

the modeling methods described here, it was possible to 

achieve high prediction accuracy in the sense of the accord-

ance of measurement and simulation results. However, these 

models have a significant disadvantage of the modeling 

effort and the high runtime and are therefore not suitable for 

use in a model predictive controller. A compromise between 

run-time and prediction accuracy with relatively low model-

ing effort is provided by adaptive learning methods with 

modeling of the controlled system by Artificial Neural Net-

works (ANN). Previous work on simulating the cabin cli-

mate with ANN showed promising results for short forecast 

horizons.  However, for longer forecasting horizons and at 

large operating range, the known works are only limitedly 

suitable for simulation in the vehicle development process 

or in use within an MPC. One reason for this is the error 

accumulation due to the multiple consecutive one-step-

ahead predictions. The output of each prediction step along 

the prediction time window is used as the input for the fol-

lowing one. As a result, the error also propagates and reso-

nates, resulting in high inaccuracies. 

An alternative architecture of recurrent neural networks, 

which is particularly suitable for the prediction of time se-

ries, has been introduced with Long Short-Term Memory 

(LSTM) networks [15]. With the use of LSTM in their 

products, the major technology companies Apple, Alphabet 

and Microsoft have achieved great success in recent years. 

Based on this network structure, a deep neural network for 

the simulation of the cabin climate will be presented in this 

paper.  

The modeling of physical systems using machine learn-

ing methods is subject to two major challenges. On the one 

hand, the right architecture, which is suitable for mapping 

the system dynamics well, must be found. The other prob-

lem consists in the quality of the learning data as the essen-

tial basis of all learning methods. The values of physical 

quantities obtained by measurements of physical processes 

are subject to deviations due to measurement uncertainties 

and measurement deviations. Since the quality of learning 

systems is limited by the quality of the learning data, pre-

processing of the signals, e.g., by smoothing and filtering, is 

required. Since this work examines the suitability of the 

architecture for mapping the system dynamics, the training 

is based on learning data generated by a conventional sys-

tem model. For this purpose, a complex detailed reference 

system model was created in a first step. Based on this ref-

48Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications



erence system model, the quality of the examined learning 

methods was evaluated. 

The following Section II describes the state of the art in 

terms of physical thermal modeling and modeling with 

ANN. In Section III the reference system model is present-

ed. Subsequently in Section IV, the structure of the LSTM-

based deep neural network is explained in more detail. Fi-

nally in Section V, simulation results of the comparison of 

NARX-based networks and LSTM-based networks are 

presented and discussed. 

II. MODELING OF THERMAL SYSTEMS 

A. Physical Thermal Modelling 

The simulation of thermal models is an established ele-

ment of the vehicle development chain. One reason is that 

development times are greatly reduced, since component 

tests can take place virtually without having to set up or 

modify a new test bench. The requirements on the models 

are not only a realistic representation of the real component 

but also the speed at which the model can be simulated. This 

requirement is particularly important for models that are 

used on real-time systems. Furthermore, the simulation time 

has a great influence on the duration of the development 

cycles and thus has a direct effect on the costs, which under-

lines the importance of this requirement once again. The 

demands posed to the model are matched by the challenges 

of modelling. These are among others: 

 Realistic mapping of system and component com-

plexity 

 Transfer of the characteristics of individual com-

ponents by means of parameterization 

 Implementation of the physical behavior of indi-

vidual components 

 Checking the thermal behavior of circulation sys-

tems 

One way to generate fast and realistic thermal models of 

components and systems is to use physical models. These 

use thermodynamic relationships to realistically model the 

interaction of a component with its environment. The ad-

vantage of the physical approach lies in the inherent quality 

of the representation of reality, provided that the laws can be 

fully captured and implemented. However, since even a 

seemingly simple component, e.g., the refrigerant pipe of an 

air conditioning system already spans a complex network of 

thermal dependencies. This makes physical modelling of 

thermal systems very demanding and therefore time-

consuming. It can take several weeks until the modelling of 

a car air conditioning system has been modeled and validat-

ed. The more complex a model becomes, the more time it 

can take to simulate it. Here, the quality of the simulation 

result competes with the simulation speed. 

 

 

1) Model exchange using FMU 

A further argument for the model-based component de-

velopment is the possibility of parallel work of different 

departments on a component by means of model exchange. 

This can be done, for example, by transferring a Functional 

Mock-up Unit (FMU) [16]. The creator of the model exports 

the model from his modeling software into the standardized 

FMU format. This creates a container file which contains all 

equation systems of the original model in the form of a DLL 

and thus makes them generally usable. Beside the DLL 

there is also an XML, which contains the interface descrip-

tion. With the FMU export, it is also possible to integrate 

the required licenses and thus make the simulation of the 

integrated model possible in the first place. In order to re-

strict the use of the license, it is limited to the simulation of 

the FMU. The user of the FMU can now integrate the origi-

nal model (e.g. Modelica code) in the format of an FMU 

into his own software environment (e.g. Matlab or MS Ex-

cel) and simulate it. 

B. Modeling of Themal Systems with ANN 

In various previous works, the modeling of thermal sys-
tems with neural networks was investigated. The majority of 
the work is focused on the simulation of building HVAC 
systems. Thus, e.g. in [17] and [18], nonlinear autoregres-
sive networks with exogenous inputs (NARX) are used to 
predict the indoor temperature and humidity in rooms. The 
networks are essentially Feed Forward networks, usually 
multilayer perceptrons (MLP), with the outputs being fed 
back. In addition to the current independent (exogenous) 
inputs and the previous outputs, time-delayed values of 
these variables are also used as input. Figure 1 shows the 
common used NARX architecture. 

 

Figure 1 NARX Architecture 

The training of the network is accomplished, without 

feedback, in a serial structure. Here, the true outputs 

y(k − 1, k − 2, … , k − 𝑛y) are used instead of the predicted 

output ŷ(k − 1, k − 2, … , k − ny). This has the advantage on 

the one hand that the exact inputs of the network are used. 

And on the other hand, a static backpropagation method 

such as the Levenberg Marquardt algorithm can be used as a 

learning method. 

Based on this principle, several papers dealing with the 

modeling of building HVAC systems have been published. 

For example, in [19], multiple autoregressive RBF-ANNs 

are used to predict the PMV. The forecast result is used here 

within an MPC to reduce energy consumption while achiev-
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ing maximizing thermal comfort. In [20], a series of recur-

rent models is used to predict humidity and indoor tempera-

ture in buildings. [21] also describes the use of a neural 

network to model a building HVAC system. This model is 

used as part of an intelligent energy management system in 

combination with a genetic algorithm to optimize the cool-

ing energy requirement. The model consists of several sub-

models for the different components of the HVAC system, 

which are constructed as multi-layer perceptron (MLP) in 

feed forward structure with a hidden layer of 20 neurons, 

one bias and one hyperbolic activation function. The models 

predict the resulting exhaust temperature, fan pressure and 

compressor output. The model has a resolution of 1 minute. 

The mean average error MAE tested was 0.52K for the 

temperature model and 0.58 KW for the energy consump-

tion.  

The modeling of vehicle HVAC systems by neural net-

works was discussed in detail in [21]-[23]. In [22] and [23], 

the modeling of an experimental automotive air condition-

ing system with a recurrent, time-delayed neural network is 

described. The model is again used within a model predic-

tive control to optimize the refrigeration cycle, in particular 

a variable speed compressor. The network has a hidden 

layer with 5 neurons and a time delay of 5 samples for the 

input and 3 samples for the feedback output. The data sam-

pling rate was 8 seconds. The training was done on- and 

offline with a Levenberg-Marquardt algorithm. Tests using 

one-step-ahead and 10-steps-ahead prediction were per-

formed. Here, it was determined that the feedback caused a 

fault accumulation, which is why an error resetting was 

performed after the 10 steps. 

An artificial neural network architecture alternative to 

NARX exists with LSTM networks. In this case, as with all 

recurrent structures, not individual data points but entire 

sequences of the data are processed further. The feedback 

takes place here on the level of individual cells. Unlike 

traditional RNNs, the problems of exploding or vanishing 

gradients in training LSTMs have a much smaller impact. 

While the base element in feed forward networks is a single 

neuron with associated weights and an activation function, 

individual LSTM-units respectively LSTM-blocks are the 

base elements in LSTM networks. The common architecture 

of an LSTM-unit consists of one cell and three gates. The 

cell represents the memory of the unit. During each calcula-

tion step, the output of the LSTM-unit ht (hidden state) and 

the state of the cell ct are calculated. 

The output of the LSTM-unit is calculated from the state 

of the cell and the output of the output gates. The cell state 

is calculated from the previous value of the cell state and the 

outputs of the input gates and the forget gate. In each of the 

three gates, as in a neuron in a feed forward network, each 

output is calculated from a weighted sum and an activation 

function. Through the training, the weights of the gates are 

adjusted and thus learned to what extent information from 

previous steps are stored or removed. The detailed descrip-

tion of the method can be found in [15]. 

Based on this basic architecture, Section IV proposes a 

deep neural network for mapping the thermal behavior of 

vehicle interior climate control. This model is trained on the 

data of a reference model, which is explained in more detail 

in the following chapter. 

III. PHYSICAL REFERENCE MODELL  

A. Model Design  

In the simulation environment Dymola, the model of a 

mobile refrigeration system and a car cabin was created 

using the modeling language Modelica, the ModelicaStand-

ardLibrary and the model library TIL Suite [24]. The air 

conditioning system used as a reference system comes from 

a Volkswagen e-Golf, which was available as a measuring 

vehicle for several months. The data collected was used to 

create a model of the vapor compression cycle, the climate 

control system and the cabin. The coarse structure of the 

refrigeration system model is shown in Figure 2. 

 

Figure 2 Refrigeration cycle with a scroll compressor (1), a high-pressure-

side external air-refrigerant heat exchanger as condenser (2) with a fan 

(10), an internal heat exchanger (11), an expansion element (3) and the 

inner heat exchanger as evaporator (4). In the air duct (9) there is a 
temperature flap (5) which divides the air flow coming from the fan (12) 

and, depending on the operating point, directs it via the heat exchanger in 

the water-glycol cycle (6) of the heating circuit. The medium is heated by a 
high-voltage PTC (7) and circulated by a pump (8). 

B. Refrigeration System Model 

Compressor: The refrigeration cycle is operated with the 
refrigerant R-1234yf and consists of a scroll compressor 
taken from the TIL standard library. By adjusting its dis-
placement volume and efficiencies, it was adapted to the 
compressor from the real refrigeration cycle. Internal pres-
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sure and friction losses as well as heat dissipation to the 
environment are also mapped by the model. 

Heat exchangers: The refrigerant-side heat exchangers 

used are from the TIL AddOn Automotive [25] and have 

been adapted to the dimensions of the e-Golf heat exchang-

ers. The heat exchangers can be adapted to the real compo-

nent via several parameters for geometry (see Figure 3), as 

well as heat transfer and pressure loss relationships. 

Following the recommendation of Rohsenow et al. [26], 

the correlation of Gnielinski [27] for Reynolds numbers less 

than 2300 and the correlation of Dittus/Boelter [28] for 

Reynolds numbers greater than 104 was used for the calcu-

lation of the refrigerant-side heat transfer coefficient for the 

case of turbulent flow. For the phase change in the conden-

ser, the correlation of Shah [29] was used. The air-side 

forced heat transfer was determined with the correlation 

established by Haaf [30]. For the refrigerant-side pressure 

loss during the phase change, the McAdams approach [31] 

in combination with the Swamee/Jain formulation [32] was 

used for Reynolds numbers greater than 2300 on the basis of 

the homogeneous calculation model. The implementation of 

the airside pressure loss was neglected. 

 

Figure 3 Modelling of heat exchangers with the TIL AddOn Automotive. 

The geometry of the heat exchangers can be completely adapted to that of 

the original component (upper illustration). Furthermore, the heat 

exchanger can be divided into cells (lower illustration). This allows a three-
dimensional analysis of the heat exchanger [25]. 

High-voltage PTC: The high-voltage PTC was imple-

mented via a heat source that transfers a loss-free heat flow 

to a tube model. The coolant, which absorbs the heat flow of 

the PTC with a defined heat transfer coefficient, is conduct-

ed through this tube model.  

Expansion Valve: The expansion element is a thermostat-

ic expansion valve. The opening behavior of the valve was 

implemented in the model based on manufacturer data. The 

nominal high- and low-pressure values are 9.7 bar at 235 

cm³/h and 3.7 bar at 160 cm³/h. The maximum operating 

point is 7 bar at 35°C. 

Fans: The fans are implemented as simple models which 

convey a defined air volume flow. Since no reliable air-side 

measurement data was available, no air-side pressure losses 

were integrated. 

C. Vehicle Cabin System Model  

The interior model comes from the TIL AddOn Cabin 

[33] and  is based on an ideally mixed zero-dimensional air 

volume (moist air), which is thermally coupled to the pas-

sengers and surrounding surfaces (walls, windows, floor, 

ceiling, dashboard, seats) and these in turn to the environ-

ment (see Figure 4). The surface elements were implement-

ed using parameters for geometry, material properties and 

heat transfer relationships. 

 
Figure 4 Structure of the cabin model with thermal connections of the 

individual components. In order to maintain the clarity, the representation 
of the long-wave radiation exchange of all components among each other, 

which is determined by view factors, was omitted 
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The air duct was modelled with a tube model available in 

TIL and thermally coupled to the underside of the dash-

board. The passenger was integrated into the cabin model as 

heat and moisture source. 

D. Comparison of  Simulation and Measurement 

The model was calibrated with several measurement runs 

and adapted via a fitting process. Since the climate control 

system uses the interior temperature as the central reference 

value, this quantity in particular is an important quality 

criterion for the model. Figure 5 shows a comparison of an 

exemplary simulation of a heating case. It can be seen that 

the interior model is not able to reproduce small temperature 

changes of the sensor. This is due to the ideal mixing of the 

air volume based on the zero-dimensional approach. How-

ever, the average heating behavior of the interior is very 

well represented. This results in a deviation of the interior 

temperature determined by the model of a maximum of 

4.8K during the heat-up phase and a maximum of 0.9K in 

control mode over all evaluated test runs. 

 

Figure 5 Comparison of measurement and simulation data of a test drive at 

an outside temperature between 0°C and 5°C. 

The climate control system of the model was based on a 
typical control unit for electric vehicles. The model can 
dynamically map the following operating states: 

 Heating 

 Cooling 

 Dehumidification 

 Re-heating 

 Ventilation 

For the work presented here, the focus was on the oper-
ating states of heating and dehumidification. The resulting 
model of HVAC system and cabin consists of 9947 de-
pendent parameters, 468 continuous time states, 199 linear 
equation systems with at most 2nd order, 32 non-linear 
equation systems with at most 1st order. The average CPU 
time is 240 seconds for 1000 simulated seconds. It was 
exported as FMU to perform the further process of ANN 
learning in Matlab and Python. 

IV. MODELING OF THE CLIMATE SYSTEM WITH ANN  

A. Model structure 

The overall model consists of 6 linked submodels. Each 
submodel consists of an individually trained network. The 
submodels were each selected according to the sensors pre-
sent in the vehicle, so that the signal trajectories of the in-
puts and outputs can be used as training data. The inputs of 
each subnet consist of feedback outputs of its own and other 
subnets, the direct outputs of other subnets and external 
inputs. Figure 6 shows simplified the overall model struc-
ture. 

 

Figure 6 Model structure of the ANN-model 

In the first subnet named the refrigerant cycle, the air 
temperature after the evaporator is predicted. For this pur-
pose, the trajectories of the inside temperature, the outside 
temperature, the relative humidity inside and outside, the 
recirculation flap position, the fan power and the compres-
sor power are used as inputs, each in the form of a sequence. 

The second network represents the heating circuit. The 
trajectories of the electrical power of the PTC element, the 
air temperature after evaporator, the past air temperature 
after the heat exchanger, the temperature flap position and 
the fan power serve as input to predict the current air tem-
perature behind the heat exchanger of the heating circuit. 
The predicted output values of the first two nets are used 
together with the position of the temperature flap and the 
blower output as input for the third network, the air distribu-
tion, to predict the outlet temperature at the vents to the 
cabin interior. 

In the fourth network, the new internal temperature is 
calculated from a number of external inputs, such as outside 
temperature, direct and diffuse solar radiation power, vehi-
cle speed, fan power, passenger number and past internal 
temperature and outlet temperature. From this, the new 
windscreen temperature and the resulting new relative hu-
midity are predicted in the last two networks. 

B. Network Architecture / Parameterization 

1) NARX 
The NARX networks were designed as in the work de-

scribed in Section II.B, each with a hidden layer with differ-
ent numbers of neurons (5, 10 and 20). The input signals of 
the networks were prepared according to the different tested 
delays of 3 and 6 delay steps. For preprocessing of the sig-
nals, the training data of the inputs and outputs was normal-
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ized by their mean value and their standard deviation. To 
generate the training data, 11 simulation runs were carried 
out with simulated journey duration of approx. 1 hour each. 
Here, a total of 40810 data samples were generated with a 
sampling rate of one second. The training data was subdi-
vided as usual into learning, test and validation sets. As a 
learning function, the Levenberg-Marquardt algorithm was 
chosen with mean square error (MSE) as performance indi-
cator. The training was carried out for each submodel with 
the different architectures and tested on 3 further unseen 
simulation runs with 10586 data samples. A maximum 
number of 200 learning epochs was defined as abort criterion 
for the learning processes. However, this never occurred 
because of the rapid convergence of the learning function. 
The RMSE was selected as benchmark for the evaluation of 
the test result. 

2) LSTM 
The LSTM networks were designed with a sequence in-

put layer, a LSTM layer with different number of LSTM-
units (5, 10 and 20), a fully connected layer and an output 
regression layer. Sequence lengths of 3 and 6 samples were 
examined. The input data was prepared as described above. 
For network training the adaptive moment estimation opti-
mizer (ADAM), stochastic gradient descent optimizer 
(SGD) und the root mean square propagation optimizer 
(RMSProp) were tested. Here, too, a maximum number of 
200 learning epochs was defined as the abort criterion of the 
learning processes. All learning methods showed a signifi-
cantly weaker convergence compared to the NARX training 
procedures, so that the learning processes were always abort-
ed due to the reached maximum number of learning periods. 
The SGD method proved to be the most efficient learning 
method. A mini batch size of 50 data samples per iteration 
was chosen. The test procedure was carried out as described 
above. 

3) Combined Overall Model 
To simulate the holistic system model, the individual 

subnetworks were linked according to the model structure 
shown in Section III.4. Here, the inputs were replaced by the 
direct and feedback outputs of the coupled individual sub-
nets. The overall system was then tested by the three addi-
tional generated unseen test drive simulations. 

V. TEST OF THE SUBMODELS AND THE COMBINED 

OVERALL MODEL 

In accordance with the test methodology described in 
Chapter IV, the individual subnets were first tested using 
unseen described test data. In the first test series, the indi-
vidual subnets were tested open loop with perfect input. This 
corresponds to the quality of a one-step-ahead prediction. 
Tables I and II show the results with the RMSE over all 3 
test drives. It should be noted that the subnets 1-5 each have 
a temperature in K as a prediction variable and the subnet 6 
a relative humidity in %. 

The predictions of the NARX networks have significant-
ly lower error rates compared to the predictions with LSTM 
networks. The error rates of the LSTM networks decrease 
with increasing network architecture complexity. 

TABLE I.  RESULTS OF THE NARX OPENLOOP SUBNET TEST 

 

TABLE II.  RESULTS OF THE LSTM OPENLOOP SUBNET TEST 

 

In a second test series, the input values of the true past 
outputs were replaced by the feedback outputs of each sub-
network. This highlighted the error accumulation generated 
by each subnetwork. Tables III and IV show the results with 
the averaged RMSE over all 3 test drives. As can be seen 
from the test results, the error rates for both network types 
increase in the partially closed loop. The NARX subnet error 
rate in this test series increases so dramatically that only 4 
NARX subnets (Network 1, 2, 4, and 5) perform better than 
the LSTM subnets. 

TABLE III.  RESULTS OF THE NARX PARTIAL CLOSED LOOP SUBNET 

TESTS 

 

TABLE IV.  RESULTS OF THE LSTM PARTIAL CLOSED LOOP SUBNET 

TESTS 

 

In the final test series all coupled inputs were replaced 
by the linked direct and feedback outputs of the coupled 
individual subnets. For the combined overall model, the sub 
network structure, which performed best in the second test 
series, was selected for the respective network types. Table 
V shows the results with the RMSE for both network types 
for all 3 test drives. As can be seen from the results, the error 
rates of the NARX networks increase significantly, while the 
error rate in the LSTM subnets is almost unchanged com-

Number of 

Hidden Layer Neurons

Number of 

Delays

RMSE

Net 1

RMSE

Net 2

RMSE

Net 3

RMSE

Net 4

RMSE

Net 5

RMSE

Net 6

5 3 0,0031 0,0035 0,0096 0,0004 0,0001 0,0111

5 6 0,0037 0,0031 0,0024 0,0013 0,0005 0,0052

10 3 0,0036 0,0045 0,0046 0,0017 0,0008 0,0167

10 6 0,0136 0,0031 0,0076 0,0004 0,0001 0,0059

20 3 0,004 0,0029 0,0019 0,0003 0,0003 0,0061

20 6 0,0059 0,018 0,0066 0,0002 0,0005 0,0067

Number of 

LSTM Units

Number of 

Delays

RMSE

Net 1

RMSE

Net 2

RMSE

Net 3

RMSE

Net 4

RMSE

Net 5

RMSE

Net 6

5 3 0,1493 0,3373 0,4015 0,1285 0,0918 0,5018

5 6 0,1223 0,3766 0,2651 0,0986 0,0729 0,4065

10 3 0,1087 0,2451 0,2132 0,0806 0,0779 0,3441

10 6 0,1332 0,3416 0,2305 0,0787 0,0723 0,327

20 3 0,1106 0,2442 0,2095 0,0592 0,0692 0,3236

20 6 0,134 0,2909 0,2175 0,0725 0,06 0,3039

Number of 

LSTM Units

Number of 

Delays

RMSE

Net 1

RMSE

Net 2

RMSE

Net 3

RMSE

Net 4

RMSE

Net 5

RMSE

Net 6

5 3 0,1493 0,3373 0,4015 0,1285 0,0918 0,5018

5 6 0,1223 0,3766 0,2651 0,0986 0,0729 0,4065

10 3 0,1087 0,2451 0,2132 0,0806 0,0779 0,3441

10 6 0,1332 0,3416 0,2305 0,0787 0,0723 0,327

20 3 0,1106 0,2442 0,2095 0,0592 0,0692 0,3236

20 6 0,134 0,2909 0,2175 0,0725 0,06 0,3039

Number of 

LSTM Units

Number of 

Delays

RMSE

Net 1

RMSE

Net 2

RMSE

Net 3

RMSE

Net 4

RMSE

Net 5

RMSE

Net 6

5 3 1,1777 4,9163 2,3134 0,5887 0,9752 8,8424

5 6 0,5883 5,1189 2,1451 0,586 0,987 13,897

10 3 0,6478 4,2755 2,2007 0,5778 0,969 5,1603

10 6 0,6148 4,9479 2,1204 0,4728 0,9435 4,5458

20 3 0,6237 4,4588 2,1995 0,6136 0,9106 5,547

20 6 0,5667 4,747 2,1876 0,4748 0,8591 3,9582
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pared to the second test series. The error rates of the NARX 
networks have a greater spread compared to the error rates of 
the LSTM networks. This is an indication for a better gener-
alization capability of the LSTM networks.  

TABLE V.  RESULTS OF THE LSTM OVERALL CLOSED LOOP TESTS 

 

In summary, the test results of the overall models for the 
cabin air and windscreen temperature (Output Network 4 and 
Network 5) and the relative humidity (Output Network 6) 
show on average smaller error rates for the LSTM-based 
overall model.  

VI. CONCLUSION 

In the experiments, the overall LSTM-based model out-
performed the overall NARX-based model for the simulation 
data tested. This leads to the conclusion that LSTM-based 
neural networks offer a promising alternative to traditional 
neural network modeling approaches. However, no conclu-
sion can be drawn regarding the general suitability of the 
procedures. On the one hand, only a small subset of possible 
external climatic conditions was mapped with the generated 
reference data, so that no valid statement can be made about 
the generalizability for a broad spectrum of climatic bounda-
ry conditions. In addition, the networks were trained with 
"perfect" training data. Therefore, no statement can be made 
about the ability of the networks to what extent noisy signals 
or measurement inaccuracies can be compensated. For fur-
ther evaluation, a wider range of test and training data must 
be used. To reduce the quality gap to physical reference 
models, more complex LSTM networks with longer input 
sequences, a higher number of LSTM units, and a larger 
number of training epochs may be required. These questions 
will be the subject of subsequent research based on this pa-
per. 
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