
Architectural Concepts and Their Evolution Made
Explicit by Examples

Mirco Schindler

Institute for Software and Systems Engineering
Technische Universität Clausthal, Germany

Email: mirco.schindler@tu-clausthal.de

Andreas Rausch

Institute for Software and Systems Engineering
Technische Universität Clausthal, Germany

Email: andreas.rausch@tu-clausthal.de

Abstract—During the evolution of a software-intensive system,
deviations may occur between the implementation and the ar-
chitecture of the system. One of the main reasons for this is
the incomplete knowledge of developers and architects, which
is based in the fact that the complexity of today’s systems
cannot be understood by one person in detail. In addition, there
is the language gap between source code representation and
architecture description. Following the technique of Programming
By Example, the presented approach built up an understanding of
architectural concepts with the help of examples, i.e., Architecture
By Example. A approach is established to extract architectural
concepts from source code and its integration into an evolutionary
and incremental development process.

Keywords–Software Architecture; Architecture Erosion; Man-
aged Architectureevolution; Agile Architecturedevelopment; Ma-
chine Learning; Architecture By Example;

I. INTRODUCTION

Typical activities within the scope of software development
are development or maintenance of software systems, the
implementation of new functionalities, the extension and the
reuse of components or software artifacts. What all these
activities have in common is a certain understanding of the
source code and its underlying architecture required for its
successful realization [1].

It is also typical that in smaller projects the architect and
developer build a personal union and often an architectural
description exists only implicitly, i.e., it is not really com-
prehensibly documented. If the roles in larger projects are
distributed among different people, this usually improves the
documentation, but this does not guarantee that the architecture
description is conform to the implementation [1]. Furthermore,
if the conformance is still given during the development time,
knowledge is lost over time, e.g., by a personnel change,
which can often lead to an architecture erosion for a long-
term evolution, as described in [2] and [3].

Considering implementation and architecture, both are a
subject to an evolution that is not always synchronized. New
technologies influence the solutions more than in any other
field in type, scope and speed. Therefore, the introduction of
new technologies is often accompanied by a paradigm or a
change of concepts.

On the other hand, the requirements for a system change
over time, requirements are added, changed or even disappear.
This leads necessarily to the fact that also the architecture is

exposed to changes, because the architecture once developed
does not need to fit any longer to the future requirements.

Figure 1. Evolution of Architecture- and Source Code artifacts

Whereas the verification of the specifications can be man-
aged by the architecture, e.g., by rule-based approaches [4], the
concepts of the developer are usually not directly played back
to the architectural level. One reason is the different language
of artifacts the architect and the developer are working with.
In addition, it is not that easy to extract best practices directly
from the source code artifacts, usually the architect has to
exchange information directly with the developer.

The area of tension between abstract architecture descrip-
tion and concrete implementation is illustrated in Figure 1.
If the artifacts of the architecture design define the scope for
the developer, then the resulting source code artifacts should
influence the architecture as well. The compromise that has to
be achieved here is between full specification of the software
architecture and the creative autonomy of the developer. But
this compromise leads to a number of general problems in
software engineering, architecture knowledge is incomplete
and not up to date, architectural concepts are not well under-
stood especially within different contexts, the same for best
practices of implementation. The presented approach address
the extraction of architectural concepts of source code artifacts.
The occurring interaction between architect and developer will
be explained in more detail in the following Section II using an
example scenario and introduce to the specific problem space.
In Section III, the solution approach is presented in detail and
its application in different systems is explained. It ends with
a conclusion and outlook.

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

II. PROBLEM DESCRIPTION

In this section, the challenge of making architectural con-
cepts explicit is introduced with the help of a clear application
example and a dialog between architect and developer, which
can reflect a typical situation in the daily work between
architect and developer.

A. A manageable Example System
To illustrate the problem space a software system was

chosen, which was designed within the project CoCoME [5].
Both architecture description as well as implementation is
existing and can be found in [6].

The system implements the functionality required for a
supermarket warehouse, from cash desk systems to report
generation and ordering of new goods. The section that is
considered here deals with the information system, whose
structure is visualized in Figure 2. For clarity reasons, multi-
plicities and a complete labeling of the interfaces were avoided,
for a complete illustration see [5]. The chosen architecture is
a classic Three-Tier architecture with Service-Oriented inter-
faces [7] [8].

Figure 2. Structural View of the information system of the CoCoME system
TradingSystem::Inventory

This system has also been studied in the work of Herold
[4]. He describes an approach for automatically verifying
compliance between a given architecture and implementation
using architecture rules. Specifically, this means for the se-
lected section of the application layer with its three internal
components (see Figure 2) that the interfaces offered by these
components have to be realized as Service-Oriented interfaces.
The corresponding architectural rule can be simplified and not
formally formulated as follows (a formal description as first-
order logic statements see [4] page 139-145):

A Service-Oriented interface only
has service methods. A service
method is a method that only has
parameters that are primitive in
type, or the type is a Transfer

Object (TO). A TO also uses
only data types that are either
primitive or TOs.

Let us take a look at a typical situation and dialog that can
occur during development:

B. Scenario
The SW developer HANNES gets the task to realize

the component OptimisationSolver in the current it-
eration, which should be integrated into the component
ProductDispatcher. He implements the functionality of
an optimization algorithm for the distribution of goods to
different supermarkets in a functionally correct way.

Afterwards the SW-Architect BO checks the realization
concerning the architecture rules presented in the previous
Section II-A. However, the result is not positive, the rule is
violated! But HANNES does not understand why, the func-
tionality is implemented correctly, the system does what it is
supposed to do!

For the developer HANNES, the architecture rules have
no relation to the code. BO shows HANNES code examples
which represent the rule and thus correctly implement this
architectural concept, as well as the lines where it deviates
from it (see Figure 3). In this case, the examples belong to the
same system, so the developer might know them or the context
in which they are used. Also, for the violations, they are linked
to concrete lines and contexts within the source files.

Figure 3. Examples of correct implementation and detected deviations

What does the deviation between the specified rule and
the implementation mean? As specified for a Service-Oriented
interface only primitive types or Transfer Objects are allowed
as parameters. Our developer HANNES now understands his
mistake after reviewing the examples and uses the Transfer
Objects. BO checks the result again and it fits, it is all good and
a new code example that implements the architecture concept
of a service-orientated interface also exists.

In the next iteration HANNES gets the task to implement
a new database query. Following the realization the architect
BO checks the implemented code artifacts, but all rules fail.
Form his perspective it seems, that HANNES did something
completely wrong. He shows him code examples, which are
correct realizations of the failed rules. But HANNES replies
that he swapped the database framework and changed the
access concept, as the new technology recommends a different
concept that increases data security, but this requires a different
way of handling the data. The architect is familiar with this

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

and tells him: ”All right, then we need to adjust the rules that
will apply to data storage components from now on in this
system”.

BO select new rules representing the new concept, checks
the code with the new rules and all is well!

As the scenario shows, an architectural violation can be
solved in two ways, by adapting the architecture or by adapting
the implementation. But how can we decide which way makes
more sense in which case? The presented approach will support
this decision making process by extracting the concepts from
source code with the goal to get an understanding of what the
developer did to get an indication of the type of violation. It can
be summarized in a general research question as follows:”How
can developers’ best practice be identified and reflected to
the architecture level?” This includes the representation and
the extraction of concepts, as well as the way the acquired
knowledge can be used to support the software engineering
process.

III. SOLUTION AND ITS APPLICATION

In this section, the approach, which is making architectural
concepts explicit, is explained and each step is illustrated with
the help of an application example.

An architectural concept is defined in this work as:

"A characterization and
description of a common, abstract
and realized implementation-,
design-, or architecture solution
within a given context represented
by a set of examples and/or rules."
[9]

According to this definition, this covers a wide range of
concept candidates, a few examples of which are given below:

• Conventions: Naming, package- and folder structure,
vocabulary, domain model . . . ; Desig-Pattern: Ob-
server, Factory, . . . ;

• Architecture-Pattern: client-server system, tiers, . . . ;
• Communication Paradigms: Service-orientated, mes-

sage based, . . . ;
• Structural Concepts: Tiers, Pipes, Filter, . . . or
• Security Concepts: encryption, SSO, . . .

A. The Overall Approach
The holistic approach is visualized in Figure 4 and con-

sists essentially of three activities (SELECTION, EXTRACTION
and GENERALIZATION), which are explained in detail in the
following Section III-B.

A Concept c is described as a set of Properties P .
Furthermore, for a Element e there is a so-called Detector
D is defined. A detector is a binary function dpj

∈ D, which
maps a concrete property pj ∈ P and a concrete element
ei ∈ E as follows:

dpj (ei) =

{
1 , iff the element ei fullfills the property pj
0 , else

(1)

An element can be a system artifact such as a class, a
method, or a relationship between two elements in a realized
system. The considered source code artefacts are transformed
in the so-called System Snapshot S. This language indepen-
dent model representation M , which is an extension of the
models of [4] [10] [11], still contains the link to the specific
lines within the source code files. This link ensures traceability
between the extracted architectural concepts and the source
code. The following applies, that the set of elements E is a true
subset of the model M , E ⊂M . A special kind of element are
associations A, which are representing dependencies between
elements.

The model instance of a given software systems, which is
stored in the System Snapshot, is transformed into the facts
base F, which describes the fulfillment of concepts for the
concrete elements. In addition, it is the repository of the new
learned or derived facts. The facts are stored within the fact
base in two different ways, a data structures that are organized
in a table structure F

|P |×|E|
E , lists facts that refer to elements

or associations, and a graph structure that describes facts about
elements, their context and their dependencies between them.
In the following the structure of the matrix F

|P |×|E|
E is given,

combining the System Snapshot with the selected detectors:

The concrete graph structure is defined as a common
weighted graph G(V,E′, w) with a given set of vertexes V and
edges E′. Whereby in this approach the vertexes are referred
to the set of elements E \ A,wherbyA ⊂ E ⊂ M and the
edges are linked to the set of associations A, FG(E\A,A,w):

The last of the three data pools is the Concept Space Ω.
All known concepts are stored in it, whereby a concept is
represented as a named element and linked with its detectors
and examples, i.e., with concrete source code examples that
fulfill this concept.

ci ∈ Ω := {identifieri, Di, Ri} (2)

In this definition Di is the set of detectors, which are able
to check a given element if this fulfills the concept ci or not.
The set Ri includes all known elements, which are fulfill the
concept ci.

The central artifact is the Configuration Σ. In each itera-
tion, i.e., with each new execution of the selection step, a new
instance σi ∈ Σ is created. The configuration is used for the
information exchange between the three activities and contains
all decisions which are made during the execution, both by
humans and by the algorithms. The result of the approach is the
so-called Concept Performance Record. This record informs
about the concepts that are in the analyzed system realization.

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 4. Overview of the solution approach and integration into a development process

In the following, this extraction process is described in
detail, as well as how it can be integrated into an evolutionary
and incremental development process and can support both
architect and developer in their work.

B. The Extraction Phase
Altogether the defined process for the extraction of archi-

tectural concepts consists of three activities Selection, Extrac-
tion and Generalization (blue boxes in Figure 4), which are
carried out iteratively and together are called the extraction
phase.

Selection: In this step, an expert decides which parts of
the system to analyses and what is the initial set of concepts
to use. So it may be possible to reduce the number of initial
concepts, since some basic knowledge of the system is usually
available, like e.g., whether the system was developed object-
oriented or not.

The selected subset of the system or the total system if
no selection has been made and the initial selected concept
set represented by its detectors are stored in the configuration
and serve as input for the next step. In addition, as already
described, the source code artifacts are transformed into a
language-independent representation and stored as a system
snapshot.

Extraction: This step is fully automated. First the fact base
is created for all selected elements by executing each selected
detector for each element. Each element is therefore assigned
to a set of positive and negative properties according to the
detector definition.

Subsequently, different algorithms from the field of ma-
chine learning are used to extract possible new facts or com-
binations from them. These so-called Concept Candidates
Ĉ are added to the fact base as non-validated concepts.
This also includes references to the representatives R of
these concept candidates, i.e., elements that fulfill this newly
extracted concept.

Generalization: After enriching the fact base with new
facts respectively potential new concepts, an expert will vali-
date these facts in the generalization step. The expert decides
on the basis of the representatives of concept candidates
whether it is a relevant concept or not. These decisions are
stored in the configuration. Thus, the configuration contains
the information about selected detectors and system artifacts
as well as the newly extracted and validated concepts on this
basis, whereby concept candidates, which were classified as
not valid, are stored as so-called anti-pattern for this system
snapshot.

Based on this decision process, new detectors are gener-
ated. This can be done manually or automatically, manually by
storing e. .g. rules, which can be checked and automatically by
training a so-called neural network detector with the examples.
Finally, this new knowledge has to be integrated into the Con-
cept Space, where it is checked whether the newly extracted
concepts are already contained and simply not selected in this
iteration. If a concept with this identifier is already contained,
the expert has to decide whether it is the same or a different
concept or variant, i.e., whether it should be added as a new
one or whether the existing detector should be trained with the
new representatives.

Implementation of the approach The algorithms listed
below describe only one possible selection for the implementa-
tion of the individual activities, i.e., the algorithms mentioned
fulfill the required characteristics. At this point, however, it
cannot be guaranteed that there will be methods that perform
better.

During selection, the expert can be supported by static
code analysis procedures or clustering techniques, for example,
to obtain different views of the system in order to select
the source code artifacts and detectors relevant to the given
task. Tools like SPAA [12] [13] [14] can be used. Also the
visualizations of the software as Software City [15] would be
conceivable to assist the expert.

In order to derive new concept candidates from the fact

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

base, various clustering methods and statistical methods were
evaluated. Statistical analysis based on frequency and distribu-
tion analyses provide a first clue for concept candidates, but
are not suitable for the automation of the extraction step like
the clustering methods.

Different clustering methods were chosen to group ele-
ments that are similar in terms of their properties in order
to derive potential candidates from them. The following were
examined: Neural Gas [16], Growing Neural Gas [17], as well
as Self-Organizing-Maps (SOM) [18], whereby in particular
the work of Matthias Reuter [19], [20] was taken into account.

These algorithms were used to find concepts at element
level, such as special data objects like the transfer objects
described in the example [5]. In addition, they were used to
extract similar properties of dependencies between elements,
to extract different types of dependencies such as special
communication channels or different types of relationships
such as an inheritance relationship typical for an object-
oriented realization.

The following algorithms were used to extract new facts
from the facts represented by the graph structure: Graph
Kernels [21], graph clustering approaches such as SPAA [13]
[12] [14] and t-SNE [22] to find similarities and anomalies
within the graph. An example in which the coordinator pattern
as a candidate results from such an extraction is described in
[2].

A SOM is also used for the creation of new detectors
within the framework of generalization by training with the
representatives. The selection and parameterization of adequate
methods in all activities, is the focus of the current, further and
ongoing work.

C. The Evolution Phase
As shown in Figure 4, the approach described in the

previous section can be embedded into any evolutionary and
incremental development process. This means that after each
implementation step the source code can be analyzed and these
results are available for the next evolution step in the design
activity.

This results in a holistic approach that considers the
evolution of architectural concepts on two levels. On the one
hand an identified concept itself is subject to changes, e.g.,
it can be refined or degenerated by further examples and on
the other hand the application of architectural concepts to a
concrete system can change during development by switching
to another technology for example.

The generated Concept Performance Record can support
the system architect in understanding the realized concepts.
This information can be combined with the results of a
conformity check, i.e., with a list of architecture violations
referring to concrete source code artifacts.

If, for example, the developer was not familiar with the
architecture and this is the reason for the violation, it can be
fixed by the developer in the next implementation step so that
no erosion occurs. On the other hand, it can be decided that
the reason for the violation is an unsuitable architecture. In
this case, the Concept Performance Record can support the
planning of architectural changes by making the aspects the
developer has in mind explicit at the architectural abstraction
level through examples.

Another aspect is the improvement of the development and
maintenance process through monitoring. We can assume that
the configuration and all data pools (fact bases and concept
spaces) are stored and versioned in a common repository.
As already introduced, a concept stored in a concept space
consists of a triple, its identifier, at least one detector, and
a set of examples that fulfill this concept. As a result of
the use of new technologies, frameworks or programming
paradigms, it can lead to new concepts that may replace old
concepts, so that once extracted concepts disappear over time
and are no longer identified. The comparison of two Concept
Performance Records from different versions of a product can
lead to indications of mutations of concepts. This can also
help to detect the erosion of the product or even a product
line architecture at an early stage and to react in a managed
way.

D. Scenario Mapping
If we have a look to the scenario defined in Section II-B,

than the described activities can support it.
We assume that in the first conflict, where no transfer

objects were used as parameters, the concept Transfer Object
is known, stored in the Concept Space and was also selected.
This means that at least one detector and corresponding
examples of Transfer Objects are existing. In this case, the
execution of the detector will result for the parameters of the
solveOptimization method (see Figure 3) not positive.
With the knowledge that these elements concept a indication
for a deviation is given. Furthermore the architect has a direct
linkage to the examples for the following discussion with the
developer.

In the second case, where the database framework and
with it a concept change is implemented, the following can
be observed. A concept that has been detected or extracted
before is no longer recognized - it has disappeared. On the
other hand, previously unknown concepts have been extracted.
The fact that an element no longer satisfies a concept fulfilled
in the previous iteration and is now referenced in a newly
extracted concept is a strong indication of a concept change.

IV. CONCLUSION AND OUTLOOK

The central element of the approach are the directly refer-
enced source code examples through which machine-learned
models become explainable, architectural concepts explicit
and the adaption of a software architecture takes place in a
managed way driven by the extracted knowledge from source
files.

The approach presented here contributes to making soft-
ware architectures explicit. The developer’s understanding of
architectural concepts is increased by code examples, i.e., a
representation he is familiar with. The architect is supported
during the decision making process, as he gets additional
information about the architecture deviations with whose help
he can decide whether the resolution of the violation is brought
about by an adaptation in the source code or by a change in the
architecture and thus the ideas of the developer are transferred
to the architecture level. In this case, it is the examples that
provide the architect with the information, with the focus on
the properties and concepts that are fulfilled by the source code
artifacts concerned.

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

With regard to the scenario described in Section
II-B another question arises here: Must be the interface
OptimisationSolverIf realized as a service-oriented
interface at all? As visualized in Figure 2, it is only used
within the application layer and not provided for external
access, i.e., a possible solution for the conflict would also be to
allow different types of implementation related to the context
of the interface. In this case, the approach supports describing
the context by the kind of the connection which exist between
interface and its environment, and the differences between the
different realization kinds which become understandable by
the description of their characteristics.

Also described in the scenario is a technology change. Re-
ferring to the prototypical development or testing in the context
of a product line as described in [9], the change becomes
explicit. For example, it becomes clear which concepts are
lost and which are added and which elements are affected.
With regard to the rolling out of a concept change to variants
of the product line, the detectors can simply determine which
elements are affected by the no longer permissible concept.

As an outlook we would like to mention the evaluation
with different OpenSource systems (e.g., Java Path Finder[23].
(approx. 178,000 LOC), jEdit[24] (ca. 58,400 LOC), PMD[25]
(ca. 110.350 LOC), log4j[26] (approx. 158,600 LOC) and the
enrichment of the fact base with semantic information, such as
functional information or data describing the runtime behavior.

The statement:”Satisfying rules can be a hard job for soft-
ware developer!” is not surprising considering that software
development is a highly creative process [27] and therefore
not every architectural violation is basically bad; rather it is
necessary to explain the deviation in its context. To achieve
this, it is necessary to make the architecture implicitly imple-
mented by the developer explicit. If we also take into account
that agile development methods are increasingly used, which
are carried out with sprint cycles of e.g., two weeks, that
architecture, too, is progressing at this rate of evolution, or
it can at least be ensured that it does not erode. A managed
architecture evolution in short cycles is only possible if both
architect and developer have a basis that both understand.

As well as a common understanding, evolution also takes
place on both levels, driven on the one hand by new re-
quirements, which may no longer be met by the current
architecture, and on the other hand driven by new technologies
or programming paradigm and best practices.

Just like the Programming By Example [28] approach an
understanding is here created through examples, too - but at
the architectural level, with the goal to bring the architectural
and the coding perspective together.

REFERENCES

[1] M. Gharbi, A. Koschel, A. Rausch, and G. Starke, Software Architecture
Fundamentals: A Study Guide for the Certified Professional for Soft-
ware Architecture – Foundation Level – iSAQB compliant. Heidelberg:
dpunkt, 2018.

[2] A. e. a. Grewe, “Automotive Software Product Line Architecture Evo-
lution: Extracting, Designing and Managing Architectural Concepts,”
in International Journal on Advances in Intelligent Systems. IARIA,
2017, pp. 203–222.

[3] C. e. a. Knieke, “A Holistic Approach for Managed Evolution of
Automotive Software Product Line Architectures,” in ADAPTIVE 2017.
Wilmington, DE, USA: IARIA, 2017, pp. 43–52.

[4] S. Herold, Architectural compliance in component-based systems:
Foundations, specification, and checking of architectural rules, 1st ed.,
ser. SSE-Dissertation. München: Verl. Dr. Hut, 2011, vol. 5.

[5] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, Eds., The Common
Component Modeling Example: Comparing Software Component Mod-
els (Lecture Notes in Computer Science / Programming and Software
Engineering), 1st ed. Springer, 2008.

[6] http://www.cocome.org/, accessed: 2018-12-12.
[7] C. Szyperski, Component Software: Beyond Object-Oriented Program-

ming (2nd Edition), 2nd ed. Addison-Wesley Professional, 2002.
[8] R. Reussner, Ed., Handbuch der Software-Architektur, 1st ed. Heidel-

berg: Dpunkt-Verl., 2006.
[9] A. e. a. Grewe, “Automotive Software Systems Evolution: Planning and

Evolving Product Line Architectures,” in ADAPTIVE 2017. Wilming-
ton, DE, USA: IARIA, 2017, pp. 53–62.

[10] C. Deiters, Beschreibung und konsistente Komposition von Bausteinen
für den Architekturentwurf von Softwaresystemen, 1st ed., ser. SSE-
Dissertation. München: Dr. Hut, 2015, vol. 11.

[11] Malte Mues, “Taint Analysis: Language Independent Security Anal-
ysis for Injection Attacks,” Master’s Thesis, Technische Universität
Clausthal, Clausthal, 2016.

[12] M. Schindler, C. Deiters, and A. Rausch, “Using Spectral Clustering to
Automate Identification and Optimization of Component Structures,”
in Proceedings of 2nd International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE), 2013, pp. 14–
20.

[13] M. Schindler, “Automatische Identifikation und Optimierung von Kom-
ponentenstrukturen in Softwaresystemen,” Diploma Thesis, Technische
Universität Clausthal, 2010.

[14] M. Schindler, A. Rausch, and O. Fox, “Clustering Source Code Ele-
ments by Semantic Similarity Using Wikipedia,” in Proceedings of 4th
International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (RAISE), 2015, pp. 13–18.

[15] R. Wettel, “Software Systems as cities,” PhD Thesis, Università della
Svizzera Italiana, Switzerland, Lugano, 2010.

[16] M. Cottrell, B. Hammer, A. Hasenfuss, and T. Villmann, “Batch and
median neural gas,” Neural Networks, vol. 19, no. 6-7, 2006, pp. 762–
771.

[17] B. Fritzke, “A growing neural gas network learns topologies,” in
Advances in neural information processing systems, 1995, pp. 625–632.

[18] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21, no. 1,
1998, pp. 1–6.

[19] M. Reuter and H. H. Tadijne, “Computing with Activities III: Chunking
and Aspect Integration of Complex Situations by a New Kind of
Kohonen Map with WHU-Structures (WHU-SOMs),” in Proceedings
of IFSA2005, Y. e. Liu, Ed. Springer, 2005, pp. 1410–1413.

[20] M. Reuter, “Computing with Activities V. Experimental Proof of the
Stability of Closed Self Organizing Maps (gSOMs) and the Poten-
tial Formulation of Neural Nets,” in Proceedings World Automation
Congress (ISSCI 2008). TSI, 2008.

[21] A. Gisbrecht, W. Lueks, B. Mokbel, and B. Hammer, “Out-of-
sample kernel extensions for nonparametric dimensionality reduction,”
in ESANN, vol. 2012, 2012, pp. 531–536.

[22] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, no. Nov, 2008, pp. 2579–
2605.

[23] http://babelfish.arc.nasa.gov/hg/jpf/jpf-core, accessed: 2018-12-12.
[24] http://www.jedit.org/, accessed: 2018-12-12.
[25] https://pmd.github.io/, accessed: 2018-12-12.
[26] https://logging.apache.org/log4j/2.x/, accessed: 2018-12-12.
[27] M. Gu and X. Tong, “Towards Hypotheses on Creativity in Software

Development,” in Product focused software process improvement, ser.
Lecture Notes in Computer Science, F. Bomarius, Ed. Berlin [u.a.]:
Springer, 2004, vol. 3009, pp. 47–61.

[28] H. Lieberman, Your wish is my command: Programming by example,
ser. Morgan Kaufmann series in interactive technologies. San Fran-
cisco: Morgan Kaufmann Publishers, 2010.

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

