
Adaptive Software Deployment

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi Chiyoda-ku Tokyo 101-8430 Japan

Email: ichiro@nii.ac.jp

Abstract—Individual IoT devices may not be able to pro-
vide enriched services because they tend to have limited or
imbalanced computational resources, e.g., lacking keyboards
or displays. To solve this problem, we propose a dynamic
federation of computational resources of smart objects as a
virtual distributed system according to users’ requirements
and context. The approach presented in this paper has two
key ideas. The first is to federate multiple smart objects or
application-specific services as a virtual computer and the
second is to separate between services for users from context-
aware policies of such services. The approach was constructed
as a general-purpose middleware system for executing and
deploying application-specific software at smart objects.

Keywords-Software deployment; Component coordination;
Distributed system; Self-organization.

I. INTRODUCTION

Internet of Things (IoT) has been used in a variety of infras-
tructures, such as power plants, energy distribution networks,
transportation systems, water supply networks, and also
the systems supporting the concept of smart houses, smart
buildings and smart factories. Nevertheless, the bandwidth
of networks between IoT devices tends to be narrow because
such networks are based on low-power connections and radio
communications. Furthermore, computational resources of
IoT devices are not or well-balanced, in comparison with
personal computers and smart phones. For example, IoT
devices may lack any keyboards or displays. Although
individual IoT devices do not have enough resources, their
federations may be able to provide enriched services, which
need computational resources, e.g., processors, memory,
input/output devices beyond the resources of individual IoT
devices.

To solve the problems discussed above, we propose to
federate computational resources of IoT devices as a virtual
distributed system. Such federations also should be adapted
to contextual information, e.g., the locations of users and
computers in addition to the computational resources of
IoT devices. Our approach provides the notion of adaptive
federations between the devices for software components
running on IoT devices. It is characterized in introducing
metaphors inspired from nature: gravitational and repulsive
forces between software for defining services and target
entities, including people or spaces that the services are

provided for in the real world (Figure 1). This is because,
like large-scale distributed systems, the scale and complexity
of such a context-aware system is beyond our ability to
manage using conventional approaches, such as centralized
or top-down approaches. The former force dynamically
deploys software for defining services at computers nearby
the targets and executing them there. It is introduced as
relocations between users and services or between services.
The latter force prevents software for defining services from
being at computers nearby the locations of the targets. It is
used as a relocation technique between similar services.

Some of the metaphors in the approach were discussed
in our previous paper [10]. In this paper, we address an
application of the metaphors to a context-aware system in
the real world. The approach is constructed as a general-
purpose middleware system for federating IoT devices with
the metaphors. To ensure independence from the underlying
location systems, the system introduces virtual counterparts
for the target entities and spaces. This paper presents the
design and implementation of the system and our evaluation
of our approach through a case study of it.

The remainder of this paper is organized as follows. In
Section 2 we outline our basic idea behind the approach.
Section 3 presents the design and implementation of the
proposed approach. In Section 4 we describe our experience
with the approach through an example. Section 5 surveys
related work and Section 6 provides a summary.

II. APPROACH

This section discusses our requirements and then outlines
idea behind the proposed approach.

A. Requirements

IoT devices are connected with one another via wired or
wireless networks. They also tend to be various because they
are often designed to their given purposes rather than any
general-purposes.

• Individual IoT devices may not be able to provide
enriched services because they tend to have only limited
resources, e.g., lacking keyboards or screens.

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

• Since IoT devices are used in the real world, services
provided from such devices often depend on contex-
tual information. Nevertheless, the services themselves
should be defined independently of context so that they
can be reused in various context.

• Our middleware system should be independent of any
underlying sensing systems to capture contextual infor-
mation in the real world in addition on any application-
specific services running on the system.

• IoT devices are often managed in a non-centralized
manner to support large-scale context-aware services,
e.g., city-level ones.

B. Adaptive federation of IoT devices

To satisfy the above requirements, we introduce the fol-
lowing approaches into our system.

• The first is to dynamically federate multiple IoT devices
or application-specific services as a virtual computer.
To satisfy the first requirement, the system dynamically
makes a virtual computer on IoT systems by federating
of hardware and software components according to
their capabilities.

• The second is to separate between services provided
for users from context-aware policies of such services.
When contextual information changes, a federation
among IoT devices should adapt itself to changes rather
than individual components running on the devices.

• The system supports software or hardware components.
It enables application-specific services to defined within
such components rather than the system.

• It is constructed as a distributed system consisting of
IoT devices, where IoT devices are managed in a peer-
to-peer manner.

Context-aware services themselves are common. To reuse
such services in other context, the middleware systems
provides contextual conditions that the services should be ac-
tivated as policies defined outside the services. The policies
can be classified into two types: gravitational and repulsive
forces between services and the target entities and spaces.

1) Virtual counterparts: We abstract away the underlying
systems, including location-sensing systems. Our middle-
ware system has the following two kinds of software com-
ponents, called agents, in addition to hardware components
corresponding to IoT devices.

• Physical entities, people, and spaces can have their dig-
ital representations, called virtual-counterpart agents,
in the system. Each virtual-counterpart is automatically
deployed at computers close to its target entity or
person or within the space. For example, a virtual-
counterpart for users can store per-user preferences and
record user behavior, e.g., exhibits that they have looked
at.

Agent migration

Computer 2Computer 1

Agent BAgent A

Agent migration

Computer 2Computer 1

Computer 2Computer 1

Gravitational force

Step 1

Step 3

Step 2

Agent migration

Agent BAgent A

Agent migration

Computer 3Computer 2

Computer 3Computer 2
Repulsive force

Computer 1

Computer 1

Step 1

Step 3

Step 2

Gravitational force

Repulsive force

Computer 3Computer 2Computer 1

Figure 1. Component deployment based on Gravitational and repulsive
policies

• The system assumes an application-specific service to
be defined in a software component and executes the
component as an autonomous entity, called a service-
provider agent. In the current implementation, existing
Java-based software components, e.g., JavaBeans, can
define our services.

The first and second agent are executed in runtime systems
and can be dynamically deployed at the runtime systems
different computers. They are executed as mobile agents [12]
that can travel from computer to computer under their own
control. When a user approaches closer to an exhibit, our
system detects that user migration by using location-sensing
systems and then instructs that user’s counterpart agent to
migrate to a computer close to the exhibit.

2) Federation and deployment as forces between agents:
As mentioned previously, we introduce nature-inspired agent
deployment policies based on two metaphors: gravita-
tional and repulsive forces. Virtual-counterpart and service-
provider agents are loosely coupled so that they can be
dynamically linked to others. The current implementation
has two built-in gravitational policies:

• An agent has a follow policy for another agent. When
the latter migrates to a computer or a location, the
former migrates to the latter’s destination computer or
to a computer nearby.

• An agent has a shift policy for another agent. When
the latter migrates to a computer or a location, the
former migrates to the latter’s source computer or to
a computer nearby.

Each service-provider agent can have at most one grav-
itational policy. Although the gravitational policy itself

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

does not distinguish between virtual-counterpart and service-
provider agents, in the above policies, we often assume the
former to be a service-provider agent and the latter to be a
virtual-counterpart agent. For example, when a visitor stands
in front of an exhibit, the underling location-sensing system
detects the location of the visitor and then the visitor’s
virtual counterpart agent is deployed at a computer close to
the current location. When service-provider agents declare
follow policies for the counterpart agent, they are deployed
at the computer or nearby computers.

The current implementation has two built-in repulsive
policies. Each service-provider agent can have zero or more
repulsive policies in addition to the shift policy.

• An agent has an exclusive policy for another agent.
When the former and latter are running on the same
computer or nearby computers, the former migrates to
another computer.

• An agent has a suspend policy for another agent. When
the former and the latter are running on the same
computer or nearby computers, the former is suspended
until the latter moves to another computer.

Each service-provider agent can have at the most one
repulsive policy. To avoid the redundancy of agents whose
services are similar at the same computers, we should use
repulsive force between service-provider agents.

III. DESIGN AND IMPLEMENTATION

This section describes the design and implementation of our
middleware system. As shown in Figure 2, it consists of
two parts: (1) context information managers, (2) runtime
systems for application-specific services. The first provides a
layer of indirection between the underlying locating-sensing
systems and agents. It manages one or more sensing systems
to monitor contexts in the real world and provides neighbor-
ing runtime systems with up-to-date contextual information
of its target entities, people, and places. The second is
constructed as a distributed system consisting of multiple
computers, including stationary terminals and users’ mobile
terminals, in addition to servers. Each runtime system runs
on a computer in the real world and is responsible for execut-
ing and migrating virtual-counterpart and service-provider
agents with nature-inspired deployment policies. It evaluates
the deployment policies of agents and then deploys the
agents at runtime systems. Application-specific services are
defined as virtual-counterparts or service-provider agents,
where the former offers application-specific content, which
is attached to physical entities, people, and places, and the
latter can be defined as conventional Java-based software
components, e.g., JavaBeans.

A. Contextual Information Management

Each Context Information Manager (CIM) manages one or
more sensing systems to monitor context in the real world,

Context Information
Manager (CIM)

Location-sensing
system (Proximity)

Location-sensing
system (Proximity)

Spot 1 Spot 2

Service-provider
agent

Visitor’s virtual
counterpart agent

Agent migration

Terminal Terminal
User migration

Follow policyRuntime system Runtime system

Context Information
Manager (CIM)

Figure 2. Architecture.

e.g., people and the locations of the target entities and
people. Among many kinds of contextual information on
the real world, location is one of the most important and
useful in managing services in IoT networks. Therefore,
this paper focuses on sensing location of IoT devices and
users although the manager itself can support a variety of
context. The current implementation of CIM supports active
Radio Frequency IDentifier (RFID)-tag systems to locate
computers and users. CIM monitors the RFID-tag systems,
detects the presence of tags attached to people and entities,
and maintains up-to-date information on the identities of
RFID tags that are within the zones of coverage of its
RFID tag readers. To abstract away the differences between
the underlying locating systems, each CIM maps low-level
positional information from each of the locating systems into
information in a symbolic model of the location. The current
implementation represents an entity’s location, called a spot,
e.g., spaces of a few feet, which distinguishes one or more
portions of a room or building. A CIM either polls its sensing
systems or receives the events issued by the sensing systems
or other CIMs. Each CIM has a database for mapping the
identifiers of RFID tags and virtual counterparts correspond-
ing to physical entities, people, and spaces attached to the
tags. These database may maintain information on several
tags. When a CIM detects the existence of a tag in a spot, it
multicasts a message containing the identifier of the tag, the
identifiers of virtual counterparts attached to the tag, and its
own network address to nearby runtime systems.

B. Runtime system

Since services are defined as software components, the mid-
dleware systems provides runtime systems that can execute
and migrate components to other runtime systems running
on different computers through TCP channels using mobile-
agent technology [12].

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

1) Execution and deployment of services: Each runtime
system is built on Java virtual machine (Java VM) version 8
or later, which conceals differences between the platform
architectures of the source and destination computers as
shown in Figure 3. It governs all the agents inside it and
maintains the life-cycle state of each agent. When the life-
cycle state of an agent changes, e.g., when it is created,
terminates, or migrates to another runtime system, its current
runtime system issues specific events to the agent.

Runtime System

OS/Hardware

Computer 1 Computer 3

Transport Protocol

TCP
session

Agent Runtime Service

Agent
Deployment

Service

Java Virtual Machine

Runtime System

OS/Hardware

Transport Protocol

Agent Runtime Service

Agent
Deployment

Service

Java Virtual Machine

Agent migration

Discovery
Management

Service

Discovery
Management

Service

Context Information
Manager (CIM)

Sensing
systems

OS/
Hardware

Computer 2

Notification
of context Notification

of context

Agent
A

Agent
B

AAgennntt
BBB

Agent
C

Network

Nature-inspired
deployment policy

Figure 3. Runtime system

When an agent is transferred over the network, not only
its code but also its state is transformed into a bitstream
by using Java’s object serialization package and then the bit
stream is transferred to the destination. Since the package
does not permit the stack frames of threads to be captured,
when an agent is deployed at another computer, its runtime
system propagates certain events to to instruct it to stop
its active threads. Arriving agents may explicitly have to
acquire various resources, e.g., video and sound, or release
previously acquired resources.

The system only maintains per-user profile information
within those agents that are bound to the user. It instructs
the agents to move to appropriate runtime systems near the
user in response to his/her movements. Thus, the agents do
not leak profile information on their users to third parties and
they can interact with mobile users in a personalized form
that has been adapted to respective, individual users. The
runtime system can encrypt agents to be encrypted before
migrating them over a network and then decrypt them after
they arrive at their destinations.

2) Policy-based federation and deployment: Our adap-
tive deployment policies are managed by runtime systems
without a centralized management server. When a runtime
system receives the identifiers of virtual counterparts corre-
sponding to physical entities, people, and spaces attached
to newly visiting tags, it discovers the locations of the
virtual counterparts by exchanging query messages between
nearby runtime systems. Each runtime system periodically
advertises its address to the others through User Datagram
Protocol (UDP) multicasting, and these runtime systems then
return their addresses and capabilities to the runtime system
through a TCP channel.

When an agent migrates to another agent’s runtime sys-

tem, each agent automatically registers its deployment policy
with the destination. The destination sends a query message
to the source of the visiting agent. There are two possible
scenarios: the visiting agent has a policy for another agent
or it is specified in another agent’s policies. Since the source
in the first scenario knows the runtime system running
the target agent specified in the visiting agent’s policy; it
asks the runtime system to send the destination information
about itself and about neighboring runtime systems that
it knows, e.g., network addresses and capabilities. If the
target runtime system has retained the proxy of a target
agent that has migrated to another location, it forwards the
message to the destination of the agent via the proxy. In
the second scenario, the source multicasts a query message
within current or neighboring sub-networks. If a runtime
system has an agent whose policy specifies the visiting
agent, it sends the destination information about itself and its
neighboring runtime systems. The destination next instructs
the visiting agent or its clone to migrate to one of the
candidate destinations recommended by the target, because
this platform treats every agent as an autonomous entity.

C. Service

Each mobile agent is attached to at most one visitor and
maintains that visitors’ preference information and programs
to provide customized annotations. Each virtual counterpart
agent keeps the identifier of the tag attached to its visitor.
Each agent in the current implementation is a collection
of Java objects in the standard JAR file format and can
migrate from computer to computer and duplicate itself
by using mobile agent technology. Each agent must be
an instance of a subclass of the class pre-defined in the
middleware system. Our system enables agents to define
the computational resources they require. When an agent
migrates to the destination according to its policy, if the
destination cannot satisfy the requirements of the agent, the
platform system recommends candidates that are runtime
systems in the same network domain to the agent. If an
agent declares repulsive policies in addition to a gravitational
policy, the platform system detects the candidates using the
latter’s policy and then recommends final candidates to the
agent using the former policy, assuming that the agent is in
each of the detected candidates.

IV. EXPERIENCE

To evaluate the performance overhead of the deployment
policies presented in this paper, we implemented and evalu-
ated a non-deployment policy version of the system. When
this version detected the presence of a user at one of the
spots, it directly deployed a service-provider agent instead
of virtual counterpart agents. We measured the cost of
migrating a null agent (a 5-KB agent, zip-compressed) and
an annotation agent (1.2-MB agent, zip-compressed) from a

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

source computer to a recommended destination computer
that was recommended. The latency of discovering and
instructing a virtual counterpart or service-provider agent
attached to a tag after the CIM had detected the presence
of the tag was 420 ms. Without any deployment policies,
the respective cost of migrating the null and annotation
agents between two runtime systems running on different
computers over a TCP connection was 41 ms and 490 ms
after instructing agents to migrate to the destination. When
the null or annotation agent had a follow policy for the
virtual counterpart agent, the respective cost of migrating
the null and annotation agents between two runtime systems
running on different computers over a TCP connection was
185 ms and 660 ms. These results demonstrate that the
overhead of our deployment policy can be negligible in
context-aware services.

Factory Wholesaler Retailer End-
consumer

Product
Agent

migration
Agent

migration
Agent

migration

Advertising How to useItem
information

Production
information

Figure 4. Forwarding agents to digital signage when user moves.

A. Advertisement media for appliances

We experimented and evaluated an advertisement system
for appliances, e.g., electric lights, with the approach. It does
not support advertising for its target appliance but also assist
users to control and dispose the appliance. We attached an
RFID tag to an electric light and provide a mobile agent as
an ambient media for the light. As shown in Figure 4, it
supports the lifecycle of the item from shipment, showcase,
assembly, using, and disposal.

• In warehouse: While the light was in a warehouse, its
counterpart object declared a follow policy to a services
that should have been deployed and running at the com-
puters of the warehouse’s operators in the warehouse.
The service displayed the item’s specification, e.g., its
product number, serial number, date of manufacture,
size, and weight.

• In a store’s showcase: While the light is being show-
cased in a store, its counterpart object declared two
follow policies. The first policy was a relocation relation
to an advertisement service fetched from the factory and
the second policy was a relocation relation to price-tag
service fetched from the store. The advertising service
was deployed at a computer close its target item, which
could display its advertising media to attract purchases

by customers who visit the store. Two images, as shown
in Figure 5 a) and b), are maintained in the agent that
display the price, product number, and manufacturer’s
name on the current computer. The price-tag service
communicated with a server provided by the store
to know the selling price of its target, electric light
and displayed the price on the display of its current
computer.

• In a store’s checkout counter:When a customer car-
ried the item to the cashier of the store, the item’s
counterpart declared a shift policy to an order service.
The service remained at a store to order another item
for the factory as an additional order.

• In house: When a light was bought and transferred to
the house of its buyer, its counterpart declared a follow
policy to an instruction service at a computer in the
house and provides instructions on how it should be
assembled. The active media for advice on assembly
are shown in Figure 5 c) and d). The service also
advises how it was to be used as shown in When it was
disposed of, the service presents its active media to give
advice on disposal. As shown in Figure 5 e), the service
provides an image to illustrate how the appliance is to
be disposed of.

Our experiment at a store is a case study in our develop-
ment of pervasive-computing services in large-scale public
spaces. However, we could not evaluate the scalability of
the system in the store, because it consisted of only four
terminals. Even so, we have a positive impression on the
availability of the system for large-scale public services.
This is because the experimental system could be operated
without any centralized management system. The number of
agents running or waiting on a single computer was bound
to the number of users in front of the computer.

a) In-store ambient media

c) In-house ambient media for assembly guide d) In-house ambient media for using guide

e) In-house ambient media for disposal guide

b) In-store ambient media

Figure 5. Agents for appliance

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

V. RELATED WORK

There have been many attempts to manage IoT devices as a
distributed system [3][6][7][5]. Govoni, et al. [5] proposed
a middleware system, called SPF, to support IoT application
and service development, deployment, and management.
However, SPF did not support any dynamic deployment
and coordination between services and devices. Fortino et
al. [6] proposed an agent-based middleware system for
discovering IoT devices in IoT through a REST interface,
for registering, indexing, and searching IoT devices and their
events, but their system did not support any deployment
and federation of software. Smart-Its [2] was a platform
specifically designed for augmentation of everyday objects
to empower objects with processing, context-awareness and
communication instead of the deployment of services. Sev-
eral researchers proposed the notion of disaggregated com-
puting as an approach to dynamically composing between
devices, e.g., displays, keyboards, and mice that are not
attached to the same computer, into a virtual computer in
a distributed computing environment. Leppaanen et al. [9]
proposed a mobile agent-based middleware for IoT devices.
Although it enabled software to be dynamically deployed
at IoT devices, it lacked any mechanisms for federating
software and devices.

That system presented in this paper is an application
of our previous bio-inspired system [10]. The system was
a general-purpose test-bed platform for implementing and
evaluating bio-inspired approaches over real distributed sys-
tems. It enabled each software agent to be dynamically
organized with other agents and deployed at computers
according to its own organization and deployment policies.
In contrast, this paper addressed a practical system with
nature-based approaches used in the real world with real
users for real applications. We presented an outline of
mobile agent-based services in public museums in our earlier
versions of this paper [11], but did not describe any nature-
inspired deployment policies in those works.

VI. CONCLUSION

This paper presented a context-aware service middleware
system with an adaptive and self-organizing approach. The
system enabled two individual agents to specify one of the
deployment policies as relocations between the agent and
another. It can not only move individual agents but also
a federation of agents over a distributed system in a self-
organized manner. We evaluated the system by applying
it to visitor-assistant services. When visitors move from
exhibit to exhibit, the visitors’ virtual counterpart agents
can be dynamically deployed at computers close to the
current exhibits to accompany the visitors via their virtual
counterpart agents and play annotations about the exhibits.
Visitors and service-provider agents are loosely coupled
because the agents are dynamically linked to the virtual

counterpart agents corresponding to them by using our
deployment policies.

In conclusion, we would like to identify further issues
that need to be resolved. We plan to evaluate existing bio-
inspired approaches to distributed systems with the platform.
We also plan to apply the system into other applications.

REFERENCES

[1] O. Babaoglu, H. Meling, and A. Montresor, “Anthill: A
Framework for the Development of Agent-Based Peer-to-Peer
Systems,” Proceeding of 22th IEEE International Conference
on Distributed Computing Systems, pp. 15-22, IEEE Computer
Society, September 2002.

[2] M. Beigl and H. W. Gellersen, “Smart-Its: An Embedded
Platform for Smart Objects,” Proceedings of the smart object
conference (SOC’2003), pp. 15–17, Springer, 2003.

[3] G. Bravos, “Enabling Smart Objects in Cities Towards Ur-
ban Sustainable Mobility-as-a-Service: A Capability – Driven
Modeling Approach,” Proceedings of International Confer-
ence on Smart Objects and Technologies for Social Good
(GOODTECHS’2016), pp. 342-352, Springer, July 2016.

[4] B. L. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. Shafer,
“EasyLiving: Technologies for Intelligent Environments,” Pro-
ceedings of International Symposium on Handheld and Ubiq-
uitous Computing, pp. 12-27, January 2000.

[5] M. Govoni, J. Michaelis, A. Morelli1, N. Suri, and M. Tor-
tonesi, “Enabling Social- and Location-Aware IoT Applica-
tions in Smart Cities,” Proceedings of International Confer-
ence on Smart Objects and Technologies for Social Good
(GOODTECHS’2016), pp. 305-341, Springer, July 2016.

[6] G. Fortino, M. Lackovic, W. Russo, and P. Trunfio, “A
Discovery Service for Smart Objects over an Agent-Based
Middleware,” International Conference on Internet and Dis-
tributed Computing Systems (IDCS’2013) pp. 281-293, LNCS,
Vol.8223, Springer, October 2013.

[7] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Middle-
wares for Smart Objects and Smart Environments: Overview
and Comparison,” in Internet of Things Based on Smart
Objects pp. 1-27, Springer, 2014.

[8] B. Johanson, G. Hutchins, T. Winograd, and M. Stone,
“PointRight: experience with flexible input redirection in inter-
active workspaces,” in Proceedings of 15th ACM symposium
on User interface software and technology, pp. 227-234, Oc-
tober 2002.

[9] T. Leppänen, J. Riekki, M. Liu, E. Harjula, and T. Ojala, “Mo-
bile Agents-Based Smart Objects for the Internet of Things,”
In Internet of Things Based on Smart Objects: Technology,
Middleware and Applications, (G. Fortino and P. Trunfio (ed.)),
pp. 29-48, Springer 2014.

[10] I. Satoh, “Test-bed Platform for Bio-inspired Distributed
Systems,” in Proceesings of 3rd International Conference on
Bio-Inspired Models of Network, Information, and Computing
Systems (BIONETICS’2008), November 2008.

[11] I. Satoh, “A Context-aware Service Framework for Large-
Scale Ambient Computing Environments,” in Proceedings
of ACM International Conference on Pervasive Services
(ICPS’09), pp. 199-208, ACM Press, July 2009.

[12] I. Satoh, “Mobile Agents,” Handbook of Ambient Intelligence
and Smart Environments, pp. 771-791, Springer, 2010.

[13] P. Tandler, “The BEACH application model and software
framework for synchronous collaboration in ubiquitous com-
puting environments,” Journal of Systems and Software,
Vol.69, No.3, pp. 267-296, 2004.

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

