ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

A Holistic Approach for Managed Evolution of
Automotive Software Product Line Architectures

Christoph Knieke, Marco Korner, Andreas Rausch,
Mirco Schindler, Arthur Strasser, and Martin Vogel
TU Clausthal, Department of Computer Science, Software Systems Engineering
Clausthal-Zellerfeld, Germany
Email: {christoph.knieke|marco.koerner|andreas.rausch|
mirco.schindler|arthur.strasser|m.vogel } @tu-clausthal.de

Abstract—The automotive industry aspires a high degree of reuse
in software development in order to reduce the development
costs. The reuse is achieved by a product-wide development for
different vehicle variants, as well as by reuse in subsequent
products. However, the increasing complexity and degree of
variability of automotive software systems hinders the capabilities
for reusability and extensibility of these systems to an increasing
degree. After several product generations, software erosion is
growing steadily, resulting in an increasing effort of reusing
software components, and planning of further development.
Here, we give a holistic approach for a long-term manageable
and plannable software product line architecture for automotive
software systems. Furthermore, we consider automotive product
development and prototyping based on software product lines,
and propose an approach for architecture compliance checking
to avoid software erosion. We demonstrate our methodology on a
real world case study, a brake servo unit (BSU) software system
from automotive software engineering.

Keywords—Architecture Evolution; Software Product Lines;
Software Erosion; Architecture Compliance Checking; Automotive.

I. INTRODUCTION

In the development of electronic control unit (ECU) soft-
ware for vehicles, the reduction of development costs and the
increase of quality are essential objectives. A significant mea-
sure to achieve these goals is the reuse of software components
[1]. The reuse is mainly achieved by a product-wide develop-
ment for different vehicle variants: Different configurations of
driver assistance systems, comfort functions, or powertrains
can be variably combined, creating an individual and unique
product. Furthermore, for each new vehicle generation, the
software of preceding generations of the vehicle is reused or
adopted [2].

However, the possibilities for reuse and extensibility of
existing functions can not be fully exploited in many cases.
Rather, it can be observed that due to the increase in so-called
“accidental” complexity [2] (see Section V-B), the reusability
and further developability reaches its limits. One reason for
this is the lack of a product-line-oriented overall planning,
based on the concepts of software product line engineering
already established in other domains. A central factor here is
the planning based on a product line architecture (PLA), on the
specification of which the individual products are derived. The
PLA describes the structure of all realizable products. Each
product that is developed has an individual product architecture
(PA) whose structure should be mapped onto the PLA.

However, an overall specification of a PLA is often missing
in the automotive domain [3]: The knowledge of the overall,

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

product independent structure is not explicitly documented,
and therefore exists only implicitly in the minds of the par-
ticipants. Here, we refer to the results shown in a preceding
paper [3] to create a PLA as a prerequisite for our approach
by applying strategies for architecture recovery and discovery.

However, the application of the software product line
development must take into account the special properties,
boundary conditions and requirements that exist in the auto-
motive environment [4]. Therefore, a method adapted to the
automotive environment is required and is presented in this
paper.

An important aspect is the design and planning of further
developments of the product line architecture. When designing
the product line architecture, the architecture must be based on
architecture principles appropriate for the automotive domain,
aiming at reusability and further development [2]. Since a wide
range of products can be affected by the further development
of the product line architecture, changes must be carefully
planned: High demands are placed on the reliability of the
systems, but the reliability is endangered by extensive adapta-
tions.

In the further development, it must be ensured that the
product architecture remains compliant with the product line
architecture. However, due to the high time and cost pressure
in the automotive sector, it is not possible, for every further
development to be controlled via the product line. Rather,
some product-specific adjustments have to be made. This can
lead (intentionally or unintentionally) to a product architecture
that differs in comparison to the product line architecture: the
architecture erodes. In the long term, this leads to reduced
reusability and extensibility of the software artifacts. Due to the
size of the product line architecture, an automated consistency
check is necessary, which is an essential part of our approach
to counteract architectural erosion.

The major objectives of our approach can be summarized
as follows:
e Long-term minimization of architecture erosion.
e High degree of reusability.
e Scalability to manage a huge number of variants in
real world automotive systems.

The paper is structured as follows: Section II gives an
overview on the related work. In Section III, we propose a
methodology for managed evolution of automotive software
product line architectures. Section IV introduces parts of the
architecture description language, which we will refer to in the

43

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

following sections. In Section V, we apply our approach on
a real world example, a brake servo unit, from automotive
software engineering. The results of a corresponding field
study are evaluated and discussed in Section VI. Section VII
concludes.

II. RELATED WORK

To the best of our knowledge, no continuous overall
development cycle for automotive software product line ar-
chitectures exists. Several aspects of our process are already
covered in literature:

A. Reference Architectures

The purpose of the reference architecture is to provide
guidance for future developments. In addition, the reference
architecture incorporates the vision and strategy for the future.
The work in [5] examines current reference architectures
and the driving forces behind development of them to come
to a collective conclusion on what a reference architecture
should truly be. Furthermore, in [5], reference architectures
are assumed to be the basis for the instantiation of product
line architectures (so-called family architectures, see [5]).

Nakagawa et. al. discuss the differences between reference
architectures and product line architectures by highlighting
basic questions like definitions, benefits, and motivation for
using each one, when and how they should be used, built,
and evolved, as well as stakeholders involved and benefited
by each one [6]. Furthermore, they define a reference model
of reference architectures [7], and propose a methodology to
design product line architectures based on reference architec-
tures [8][9].

B. Software Erosion

In [10], de Silva and Balasubramaniam provide a survey
of technologies and techniques either to prevent architecture
erosion or to detect and restore architectures that have been
eroded. However, each approach discussed in [10] refers to
architecture erosion for a single PA, whereas architecture
erosion in software product lines are out of the scope of the
paper. Furthermore, as discussed in [10], none of the avail-
able methods singly provides an effective and comprehensive
solution for controlling architecture erosion.

Van Gurp and Bosch [11] illustrate how design erosion
works by presenting the evolution of the design of a small
software system. The paper concludes that even an optimal
design strategy for the design phase does not lead to an optimal
design. The reason for this are unforeseen requirement changes
in later evolution cycles. These changes may cause design
decisions taken earlier to be less optimal.

The work in [12] describes an approach to flexible ar-
chitecture erosion detection for model-driven development
approaches. Consistency constraints expressed by architectural
aspects called architectural rules are specified as formulas on
a common ontology, and models are mapped to instances
of that ontology. A knowledge representation and reasoning
system is then utilized to check whether these architectural
rules are satisfied for a given set of models. Three case studies
are presented demonstrating that architecture erosion can be
minimized effectively by the approach.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

C. Software Product Line Architectures

As discussed in [3] an overall automotive product line
architecture is often missing due to software sharing. Thus,
architecture recovery and discovery has to be applied by
concepts of software product line extraction [3]. The aim of
software product line extraction is to identify all the valid
points of variation and the associated functional requirements
of component diagrams. The work in [13] shows an approach
to extract a product line from a user documentation. The Prod-
uct Line UML-based Software Engineering (PLUS) approach
permits variability analysis based on use case scenarios and the
specification of variable properties in a feature model [14]. In
[15], variability of a system characteristic is described in a
feature model as variable features that can be mapped to use
cases. In contrast to our approach, these approaches are based
on functional requirements whereas our approach is focused
on products.

In numerous publications, Bosch et. al. address the field
of product line architecture, software architecture erosion, and
reuse of software artifacts: The work in [16] proposes a method
that brings together two aspects of software architecture: the
design of software architecture and software product lines.
Deelstra et al. [17] provide a framework of terminology and
concepts regarding product derivation. They have identified
that companies employ widely different approaches for soft-
ware product line based development and that these approaches
evolve over time. The work in [18] discusses six maturity levels
that they have identified for software product line approaches.
In [19], a methodical and structured approach of architecture
restoration in the specific case of the brake servo unit (BSU) is
applied. Software product lines from existing BSU variants are
extracted by explicit projection of the architecture variability
and decomposition of the original architecture.

The work in [20] gives a systematic survey and analysis
of existing approaches supporting multi product lines and a
general discussion of capabilities supporting multi product
lines in various domains and organizations. They define a multi
product line (MPL) as a set of several self-contained but still
interdependent product lines that together represent a large-
scale or ultra-large-scale system. The different product lines
in an MPL can exist independently but typically use shared
resources to meet the overall system requirements. According
to this definition, a vehicle system is also an MPL assuming
that each product line is responsible for a particular subsystem.
However, in the following, we only regard classic product
lines, since the dependencies between the individual product
lines in vehicle systems are very low, unlike MPL.

D. Software Product Line Architecture Evolution

Thiel and Hein [21] propose product lines as an approach
to automotive system development because product lines facil-
itate the reuse of core assets. The approach of Thiel and Hein
enables the modeling of product line variability and describes
how to manage variability throughout core asset development.
Furthermore, they sketch the interaction between the feature
and architecture models to utilize variability.

Holdschick [22] addresses the challenges in the evolution
of model-based software product lines in the automotive do-
main. The author argues that a variant model created initially
quickly becomes obsolete because of the permanent evolution

44

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

of software functionalities in the automotive area. Thus, Hold-
schick proposes a concept how to handle evolution in variant-
rich model-based software systems. The approach provides an
overview of which changes relevant to variability could occur
in the functional model and where the challenges are when
reproducing them in the variant model.

Automotive manufacturers have to cope with the erosion
of their ECU software. The work in [2] proposes a systematic
approach for managed and continuous evolution of dependable
automotive software systems. It is described how complexity
of automotive software systems can be managed by creating
modular and stable architectures based on well-defined re-
quirements. Both architecture and requirements have to be
managed in relation. Furthermore, to face the lack of flexibility
of existing hieratic automotive software systems development
approaches, they are focusing on four driving factors: systems
engineering and agile function development, feature and func-
tion driven team development, agile management principles,
and a seamless tooling infrastructure supporting continuously
and iteratively evolving automotive software systems in a
flexible manner.

To counteract erosion it is necessary to keep software com-
ponents modular. But modularity is also a necessary attribute
for reuse. Several approaches deal with the topic reuse of
software components in the development of automotive prod-
ucts [1][23]. In [1], a framework is proposed, which focuses
on modularization and management of a function repository.
Another practical experience describes the introduction of a
product line for a gasoline system from scratch [23]. However,
in both approaches a long-term minimization of erosion is not
considered.

A previous version of our approach is described in [3]
focusing on the key ideas of the management cycle for
product line architecture evolution. Furthermore, an approach
for repairing an eroded software consisting of a set of product
architectures by applying strategies for recovery and discovery
of the product line architecture is proposed.

III. OVERALL DEVELOPMENT CYCLE

Our methodology for managed evolution of automotive
software product line architectures is depicted in Figure 1.
The methodology consists of two levels of development: The
cycle on the top of Figure 1 constitutes the development
activities for product line development, whereas the second
cycle is required for product specific development. Not only
both levels of development are executed in parallel but even
the activities within a cycle may be performed independently.
The circular arrow within the two cycles indicates the depen-
dencies of an activity regarding the artifacts of the previous
activity. Nevertheless, individual activities may be performed
in parallel, e.g., the planned implementations can be realized
from activity PL-Plan, while a new PLA is developed in
parallel (activity PL-Design). The large arrows between
the two development levels indicate transitions requiring an
external decision-making process, €.g., the decision to start a
new product development or prototyping, respectively.

In the following subsections, we will explain the basic
activities of our approach in detail by referring to the terms
depicted in Figure 1. Table I gives a brief overview on the
objectives of each of the 12 activities, including inputs and
outputs.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

Product line (PL)

PL-Requirements
PL-Design PL-Plan
PL-Check PL-Implement
Product (P)
P-Design P-Plan
PtoPL @
P-Check P-Implement
P-Requirements

Figure 1. Overall development approach

We distinguish between the terms ‘project’ and ‘product’
in the following: A project includes a set of versioned software
components, so-called modules. These modules contain vari-
ability so that a project can be used for different vehicles. A
product on the other hand is a fully executable software status
for a certain vehicle based on a project in conjunction with
vehicle related parameter settings.

A. Planning and Evolving Product Line Architectures

(PL-Requirements) Software system and software
component requirements from requirements engineering serve
as input to the management cycle of the PLA. Errors occurring
during the phase of requirements elicitation and specifica-
tion have turned out to be major reasons for the failure
of IT projects [24]. In particular, errors occur in case the
requirements are specified erroneous or the requirements have
inconsistencies and incompleteness. Errors during the phase of
requirements elicitation and specification can be avoided by
choosing an appropriate specification language enabling the
validation of the requirements. In [25], e.g., activity diagrams
are considered for the validation of system requirements by
directly executable models including an approach for symbolic
execution and thus enabling validation of several products
simultaneously.

(P to PL) Artifacts of the developed product from the
product cycle in Figure 1 serve as further input to the manage-
ment cycle of the PLA: The product documentation contains
architectural adaptations and change proposals, which can be
integrated in the PLA. Furthermore, the modified modules in
their new implementation are committed to the management
cycle of the PLA for integration in product line.

(PL-Design) Next, we consider the design of the PLA.
Generally, a software system architecture defines the basic
organization of a system by structuring different architectural
elements and relationships between them. The specification
of “good” software system architecture is crucial for the
success of the system to be developed. By our definition, a
“good” architecture is a modular architecture which is built
according to the following: (a) design principles for high
cohesion, (b) design principles for abstraction and information
hiding, and (c) design principles for loose coupling. In [2],
we propose methods and techniques for a good architecture

45

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE 1. EXPLANATION OF THE ACTIVITIES IN FIGURE 1.

Activity Input Objective Output

PL-Design Software system / component require- Further development of PLA with consideration of design prin- New PLA (called “PLA vision”).
ments and documentation from product ciples. Application of measuring techniques to assess quality of
development. PLA.

PL-Plan PLA vision. Planning of a set of iterations of further development toward the Development plan including the planned

PL-Implement Development plan for product line.

PL-Check Architecture rules and set of imple-
mented modules to be checked.

P-Design Project plan and product specific re-
quirements.

P-Plan Product architecture.

P-Implement Development plan for product develop-

ment.

P-Check Architecture rules and set of imple-
mented modules to be checked.

PLto P Development plan for product line.

P to PL Developed product.

PL-Requirements Requirements.

P-Requirements Requirements in particular from calibra-

tion engineers.

PLA vision taking all affected projects into account.

Implementation including testing as specified by the development
plan for product line development.

Minimization of product architecture erosion by architecture con-
formance checking based on architecture rules.

Designing product architecture and performing architecture adap-
tations taking product specific requirements into account. Compli-
ance checking with PLA to minimize erosion.

Definition of iterations to be performed on product level toward
the planned product architecture.

Product specific implementations including testing as specified by
the development plan for product development.

Architecture conformance checking between PLA and PA.

Defining a project plan by selecting a project from the the product
line.

Providing product related information of developed product for
integration into product line development.

Specification and validation of software system and software
component requirements by requirements engineering.
Specification of special requirements for a certain vehicle product
including vehicle related parameter settings.

order of module implementations and
the planned related projects.

Implemented module versions.

Check results.

Planned product architecture.
Development plan for product develop-
ment.

Implemented module versions.

Check results.

Project plan.

Product documentation and implemen-

tation artifacts of developed products.

Software system and software compo-
nent requirements.

Vehicle related requirements.

design. Based on these methods and techniques a new PLA
is defined (called PLA vision) taking the new requirements
(PL-Requirements) and product related information (P
to PL) into account. To assess the quality of the designed
PLA, it is necessary to measure complexity and to describe
the results numerically. In particular, we consider properties
such as cohesion, coupling, reusability and variability in order
to draw conclusions about the quality of the PLA.

(PL-Plan) As further development of the PLA will effect
a high number of products, the changes have to be planned
carefully in order to avoid errors within the corresponding
products and to avoid architecture erosion. Thus, the planning
phase has to define a set of iterations of further development
towards the PLA vision. All allowed changes are planned as
a schedule containing the type of change and timestamp. It is
planned in which order the implementation of corresponding
modules should take place. It should be emphasized that there
are many parallel product developments, which must be taken
into account when planning. Next, either affected projects and
modules are determined or a pilot project is selected.

Some further developments can lead to extensive archi-
tectural changes. In this case the effects of the architectural
changes on the associated projects have to be closely exam-
ined. For this purpose further development projects can be
defined as prototype projects for certain iterations of the PLA.
These projects are then tested within the product cycle.

B. Automotive Product Development and Prototyping based
on Software Product Lines

(PL-Implement) The former planning activity has de-
termined the schedule for PLA adaptations and product re-
leases. Thus, on the implementation level, new versions of
the software are planned, too. Vehicle functions are modeled
using a set of modules, specifying the discrete and continuous
behavior of the corresponding function. As required by ISO

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

26262, each module needs to be tested separately. Established
techniques for model-based testing necessitate a requirements
specification from which a test model can be derived. In
practice, requirements are specified by natural language and
on the level of whole vehicle functions instead of modules so
that test models on module level can not be derived directly.
Therefore, in [26], a systematic model-based, test-driven ap-
proach is proposed to design a specification on the level of
modules, which is directly testable. The idea of test-driven
development is to write a test case first for any new code that
is written [27]. Then the implementation is improved to pass
the test case. Based on the approach in [26] we use the tool
Time Partition Testing (TPT) because it suits particularly well
due to the ability to describe continuous behavior [28]. The
modules may be developed in ASCET or MATLAB/Simulink.

(P-Requirements) Releasing a fully executable soft-
ware status for a certain vehicle product requires a specification
of vehicle related parameter settings. Furthermore, special
requirements for a specific product may exist necessitating fur-
ther development of certain implementation artifacts. Building
an executable software status for a certain vehicle product is
realized by the cycle at the bottom of Figure 1. In contrast,
the product line cycle in Figure 1 includes the development of
sets of software artifacts of all planned projects.

(PL to P) Automotive software product development and
prototyping starts with selecting a product from the product
line. Therefore, the project plan is transferred containing
module descriptions and descriptions of the logical product
architecture integration plan with associated module versions.

(P-Plan) The product planning defines the iterations to
be performed. An iteration consists of selected product archi-
tecture elements and planned implementations. An iteration is
part of a sequence of iterations.

(P-Implement) An iteration is completed when all

46

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

planned elements of an iteration are implemented according
to the test-driven approach of [26].

C. Architecture Conformance Checking for Automotive Soft-
ware Product Line Development

Architecture erodes when the implemented architecture of
a software system diverges from its intended architecture.
Software architecture erosion can reduce the quality of soft-
ware systems significantly. Thus, detecting software archi-
tecture erosion is an important task during the development
and maintenance of automotive software systems. Even in
our model-driven approach where implementation artifacts are
constructed w.r.t. a given architecture the intended architecture
and its realization may diverge. Hence, monitoring architecture
conformance is crucial to limit architecture erosion.

Each planned product refers to a set of implementation
artifacts, called modules. These modules constitute the prod-
uct architecture. The aim of PL-Check and P-Check is
the minimization of product architecture erosion. In [12], a
method is described to keep the erosion of the software to a
minimum: Consistency constraints expressed by architectural
aspects called architectural rules are specified as formulas on a
common ontology, and models are mapped to instances of that
ontology. Based on this approach we are extracting rules from
a PLA to minimize the erosion of the product architecture.
During the development of implementation artifacts the rules
can be accessed via a query mechanism and be used to check
the consistency of the product architecture. Those rules can,
e.g., contain structural information about the software like
allowed communications. In [12], the rules are expressed as
logical formulas which can be evaluated automatically to the
compliance to the PLA.

(PL-Check) After each iteration planned in activity
PL-Plan all related product architectures have to be checked.
As P-Check refers to one product only, the check is per-
formed after all related implementation artifacts of the product
are developed.

(P-Design) The creation of a new product starts with
a basically planned product architecture commonly derived
from the product line. For the development of the product,
new functionalities have to be realized and thus necessary
adaptations to the planned product architecture are made. In
order to keep the erosion to a minimum we have to ensure
the compliance to the architecture design principles of the
PLA. Therefore, we check consistency of the planned product
architecture by applying architecture rules from the PLA.

However, in the case of prototyping it may be desired
that the planned product architecture differs from PLA speci-
fications. Thus, as a consequence, the architecture rules are
violated. As pointed out in Section III-A, product related
information is returned to the management cycle of the PLA
after product delivery. If the development of a product required
a differing product architecture w.r.t. the PLA, this could
advance the erosion. Necessary changes must be communi-
cated to PL-Design and PL-Plan s.t. the changes can be
evaluated and adopted. As changes to the PLA can have severe
influences on all the other architectures the changes are not
applied immediately but considered for further development.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

IV. ARCHITECTURE DESCRIPTION LANGUAGE

Evolution of the logical architecture and module architec-
ture in product line and in product development involves a huge
number of architecture elements and their relations. To handle
this complexity, model based techniques are used within our
methodology.

To develop the logical architecture and the module archi-
tecture using model based techniques we defined a description
language by a metamodel. For each activity in our approach
instances of the metamodel with several views are modeled.
Each view focuses on different architecture elements. The
product line phase deals with architecture elements for several
product architectures. To derive product architectures from the
product line phase variant handling has to be considered. We
will describe these concepts of our approach in detail in the
following.

EMAB metamodel: The Einheitliche Modulare Archi-
tektur Beschreibung (EMAB) is used to describe the decom-
position structure and connection structure of logical architec-
tures and module architectures.

Figure 2 depicts a simplified part of the metamodel that
shows the abstract syntax of the two architecture layers
DESIGN and IMPLEMENT. The architecture elements of
these two layers are used to model product lines and product
architectures. In the following, we describe the two layers in
detail.

The DESIGN layer contains architecture elements to de-
scribe abstract software aspects. LogicalArchitecture—
Element is used to decompose these aspects into groups
of corresponding implementation artifacts. Some of those
elements may have dependencies with other elements of
the logical architecture. In this case LogicalElement-
Connection connects exactly two logical architecture ele-
ments as a directed connection between one source and one tar-
get element. Each LogicalArchitectureElement can
be referenced by a number of connections. The connection
between two elements semantically allows the communication
constrained by the source/target direction.

In the IMPLEMENT layer, code relevant software as-
pects are described. Thus, ModuleArchitectureEle-
ment decomposes the software code aspects into groups.
For example, a header file and a c-code file of a cer-
tain software application are represented by a Module-
ArchitectureElement. Directed dependencies between

OCL
{Self.export.mapArchitectureElement.LogicalElementConnection->intersection(
Self.import.mapArchitectureElement.LogicalElementConnection)->size()>0}

\

\
|MP}EM ENT

*

DESIGN

ModuleElement
Connection

I

|

LogicalElement I
Connection |
I

|

I

* target| 1 * import | 1

1| ModuleArchitecture
export Element

1| LogicalArchitecture
source Element

No.1 I) *
mapA‘chltectureEIemen

Figure 2. Simplified EMAB metamodel

47

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

exactly one export and one import element are connected by
the ModuleElementConnection. Each ModuleArchi-
tectureElement can be referenced by a number of con-
nections. The connection between two elements semantically
allows the communication constrained by the import/export
direction.

LogicalArchitectureElements have to be referred
to implementation artifacts for product development. There-
fore, the EMAB metamodel determines that the Module-—
ArchitectureElement can reference at most one Log—
icalArchitectureElement using the mapArchitec—
tureElement to determine the appropriate module elements
of a logical element.

Connections between two LogicalArchitecture-
Elements have to be properly considered at the imple-
mentation in the IMPLEMENT layer: Connections between
ModuleArchitectureElements have to be conform with
the connections specified in the DESIGN layer. To ensure
that connections are realized properly, conformance rules are
applied. One example OCL rule is shown in Figure 2 that
constraints the ModuleElementConnection as context
element for the check.

Views: The DESIGN layer focuses on the logical architec-
ture. Figure 3 represents the DESIGN view as block diagram
with two instances of logical architecture elements and the
connection between them. The roles source and target
indicate the direction of the connection.

LogicalElement
Connection

DESIGN

LogicalArchitecture
Element3

LogicalArchitecture |source target| LogicalArchitecture
Element1 Element2

Figure 3. DESIGN view as part of the metamodel instance

The IMPLEMENT view in Figure 4 represents the module
architecture instances as blocks and their connection as con-
nection instances. Moreover, each module architecture element
is referencing one logical architecture element represented
by dashed connections between a module element block and
logical element block.

IMPLEMENT
LogicalArchitecture |
Element3 1
|
|
_| LogicalArchitecture | source targef LogicalArchitecture |
| Element1 Element2 |
| T |
/I . 1 |
. | export impor |
mapArchlteC(ure}/ | ModuleArchitecture ModuleArchitecture |
Element Elementl import export Element2 |
|
export ModuleArchitecture |_|
import Element3

ModuleElement |/
Connection

Figure 4. IMPLEMENT view as part of the metamodel instance

Figure 5 shows an example for the CHECK view, checking
the conformance rule on connections of the DESIGN layer’s

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

logical architecture elements and IMPLEMENT layer’s mod-
ule architecture elements. The check of the OCL rule in the
middle of Figure 5 is fulfilled as the specified connection be-
tween the two module architectures elements correspond to the
connection between the mapped logical architecture elements.
However, the further checks of the OCL rule fail: In the first
case, the direction from import to export constitutes a violation.
And in the next case, as ModuleArchitectureElement3
maps to LogicalArchitectureElement3 no connec-
tion is allowed from ModuleArchitectureElementl.

CHECK

LogicalArchitecture
Element3

LogicalArchitecture | source target| LogicalArchitecture
Elementl Element2

|
|
/l OCL rule I
mapArchitecture | evaluated to {>0} |
Element |/ | |
| export] impor .
|| ModuleArchitecture ModuleArchitecture

Element1 import §§§ export Element2

export ModuleArchitecture |
import Element3
\| ocL rule
evaluated to {=0}

Figure 5. CHECK view as part of the metamodel instance

g

Variant handling: In product line development, architec-
ture elements of module and logical architectures are realized
to be reused in several software products. The architecture
models enclose decomposition variants and behavior variants.
During product development, the decomposition variants and
the behavior variants have to be determined. Therefore, a
further part of the EMAB metamodel provides the syntax to
describe structure variants, behavior variants and valid selec-
tion conditions. Selection conditions are necessary to derive
architectures and to derive behavior for product development.
The part of the EMAB metamodel dealing with variants is
out of the scope of this contribution in order to focus on the
methodology.

Version handling: Each architecture element of the prod-
uct line development and of the product development is kept
in a repository. The repository provides a version control
capability. A modified or created element is committed with
a unique version ID into the repository. Predecessor relations
are defined in case of modifications of an existing version. The
repository also enables the selection of elements for product
line development or product development. The part of the
EMAB metamodel dealing with versioning is out of the scope
of this contribution in order to focus on the methodology.

V. REAL WORLD EXAMPLE: BRAKE SERVO UNIT (BSU)

In this section, we present an example of a software system
we developed in cooperation with Volkswagen. The main task
of this system is to ensure a sufficient vacuum within the brake
booster that is needed to amplify the driver’s braking force. At
first, we describe the context the system is embedded in and a
view onto the system’s structure. We show how the system has
evolved. After the presentation of the mapping of the evolution
onto our approach, we give results and a discussion.

48

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

A. System Structure and Context of BSU

In vehicles, a vacuum brake booster (brake servo unit/BSU)
is mounted between the brake pedal and the hydraulic brake
cylinder. It consists of two chambers separated through a
movable diaphragm. If the driver is not braking, the air is
evacuated from both chambers. When he pushes on the brake
pedal a valve opens and atmospheric pressure air flows into one
chamber. Due to the differential air pressure within the BSU
the diaphragm starts to move towards the vacuum chamber
creating a force. This force is used to amplify the driver’s
braking force.

The vacuum can be generated using different techniques.
The BSU is either attached to the intake manifold using its
internal lower pressure or to an electrically or mechanically
driven vacuum pump. Using the intake manifold as vacuum
generator can be problematic. Special operating modes of other
vehicle’s subsystems can increase the intake manifold pressure
so much that its internal vacuum is not sufficient to evacuate
the BSU when needed.

The software system realizes a set of feedback controllers
to reduce the disturbances caused by other systems or to switch
on the vacuum pump, respectively. Since it makes no sense to
use all controllers at the same time it is necessary to coordinate
their activation. Besides the controlling of BSU vacuum and
the coordination of controllers, the software has to provide
valid pressure information all the time. In order to realize that
the software selects from several sensors the one that provides
the best quality of pressure information. The logical view of
the designed architecture is presented in Figure 6.

Sensorsl\ Control Functions l\
System Diagnostics

target
e e =N - - l—_——_—_———— = o

. | starget |
BSU Sensor 1 | E Control Function1 | |

source | ||| |
BSU Sensor 2

DESIGN

source
BSU Sensor MUX

source | |target| Control Function2 ||

Figure 6. Logical view of the software architecture of BSU

The BSU hardware system is part of a wide range of
products within the huge family of cars. Since the diversity of
the used hardware components like sensors and actuators that
are mounted to the braking system and features that influence
the BSU software one important goal of the architecture
development was to support variability. The BSU software
system is decomposed into two major parts: sensors and
control functions. The decomposition of the sensor
component into parts for every sensor type each allows a
one to one mapping from features to components. To realize
variability in an efficient way, standardized interfaces are used
for communication. A coordinating component just has to
provide a sufficient amount of ports for the interaction with
the sensors and control functions.

The control functions component is decomposed
using a similar technique. Every control function is realized by
a specific component. These components provide standardized
interfaces for communication with subsequent vehicle func-

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

tions, which must follow the BSU commands, e.g., disable the
start-stop system (not depicted in Figure 6).

B. Evolution of BSU

As it was customary in the automotive domain, BSU’s
hardware and software have been implemented by various
suppliers in the past. The requirements for the functionalities
of the system were the same for all suppliers, but there
were differences in the type of implementation by the respec-
tive suppliers. During the further development of the system
over many years, new requirements had to be continuously
implemented. Examples of this are the support of various
engine variants such as otto, diesel and electric engines. As
the range of functions increased, the essential complexity
grew; however, the accidental complexity [29] has increased
disproportionately. The growth of accidental complexity results
from a “bad” architecture with strong coupling and a low
cohesion which have evolved over the time. Despite extensive
further development of the system, the original structure of the
software was not adequately adapted. Overall, the monolithic
structure of the software remained. The software consisted of a
single software module, which, however, was internally char-
acterized by increasing accidental complexity. The variability
was realized completely by annotations. Thereby, the system’s
maintainability and expandability has been complicated addi-
tionally.

In recent years, many automotive manufacturers have be-
gun to develop software primarily in-house to save costs and
to secure important know-how. However, the hardware com-
ponents are still being developed by the supplier companies
in general. Against this background, Volkswagen decided to
develop the BSU in-house in the future. Together with our
institute, Volkswagen developed its own software for the BSU
in 2012 on the basis of the existing system. Configurability,
extensibility and comprehensibility were defined as essential
quality targets. In addition, new architecture and design con-
cepts have been introduced to meet these quality objectives in
the long term and permanently.

After successful introduction of the system into series
production, the software system was continuously developed
after 2012. In all, the BSU system was reused in more than
140 project versions, some of them with adaptations. There
were, for example, the introduction of five additional control
functions that were necessary because of changes to the system
environment. This includes, in particular, the introduction of
new components such as actuators, which were essentially
driven by the electrification of the powertrain. In the following
sections, we will present our methodology by means of the
BSU’s further development and discuss the results. However,
due to the obligation of secrecy, we can not name real-world
functions. Instead, we will abstract from real control functions,
actuators, and sensors in the following sections.

C. Application of our Approach to BSU Further Development

In this section, we will outline the evolution of BSU
further development, described in the previous section, mapped
to the overall development cycle visualized in Figure 1. As
mentioned in Section V-B, the development started in 2012
and continues until today. We will pick out the milestones of
this evolution process and explain in detail, how our approach
supports the management of development. Therefore, we will

49

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

describe the further development of the BSU chronologically.
The architecture of the BSU at this point is equivalent to
Figure 6.

The first considerable development activities leading to
architectural evolution results from two new control functions.
These new control functions are specified as product line
requirements (PL-Requirement). In the following activity
PL-Design, the new requirements including all open require-
ments and feedbacks from the ongoing product development
activities submitted by activity P to PL, are took into ac-
count by the designing of the new PLA (called “PLA vision™).
The resulting PLA includes two new components, whereby
each component represents one of the new control functions.

After assessing and determining the new PLA vision, the
PL-Plan activity starts. It was decided to realize the new
PLA vision in two iterations, per iteration cycle, one of the new
components should be implemented completely. Regarding to
the development plan in activity PL-Implement the first
component was implemented. PL-Check activity is triggered
after the new component is fully implemented. In this activity,
the conformance of the implementation is checked against the
planned architecture (PLA vision), as illustrated in Section IV.
The outcome of the checks was positive so the next iteration
was started.

Parallel to the implementation of the second defined com-
ponent some concrete products are selected to integrate the new
developed control function in real products (activity PL to
P). It was decided to setup a new pilot product additionally.
The pilot got a special requirement by a P-Requirement
activity. The proving by prototypes or pilots is a common
approach in the automotive domain. Due to the specification of
the special requirement, which includes a new control function
with a coordinating feature, a prototyping approach was used
to realize this requirements. This simply means that we have
a main control function and a backup control function, if the
main function is not available the backup function should be
used.

The solution of the P-Design activity was a solution
which fulfills all requirements. It was decided to add a new
component representing the new control function and to es-
tablish an additional coordinator component. The coordinator
has the responsibility of the controlling of main and backup
functions and realizing the coordinating feature.

In the P-Plan activity the iterations to be performed
had to be defined and scheduled. The outcome was a devel-
opment plan with two iteration steps. In the first step, the
new control function and the coordinator component should
be implemented. And in a second step, all existing control
functions had to be adapted, because they had to be defeatable
to perform as main or backup function.

According to the development plan, the P-Implement
activity was performed. After each iteration step, a confor-
mance check was done (P—Check). In our case study we
detected a violation of an architectural rule. Consequently, it
was evaluated and discussed, if the solution of the violation
results in adapting the implementation or in adapting the
architectural rule itself - or in simple words, is there a crummy
implementation or an insufficient architecture. In terms of
internal classification we cannot go in detail at this point.

After evaluating the product realization all adaptations and

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

changes of architecture and implementation are forwarded to
the product line architecture level by a P to PL activity.
These are inputs for the next PL-Design activity, thereby it
had to be decided which changes should be integrated into the
product line architecture and its implementation or otherwise
which had to be declared as a “special” solution. In our case the
coordinator concept was established in the product line. The
final architecture is visualized in Figure 7 including all newly
developed control functions, the coordinator component, and
the additional connections between the control functions and
the coordinator for the controlling of activation.

In summary, the architecture of the BSU is largely stable
after the introduction of the coordinator concept until today.

Sensors}\ Control Fur\mons}\ Coordinator Cuncep(l\
e T

Coordinator |

ol sourcel

- sourcel i

|
I
e i
I |
I
|

DESIGN

Figure 7. Logical view of the software architecture of BSU including the
coordinator concept and the three new Control Functions

Overall we state that our approach can deal with many par-
allel activities at product line and product level. This becomes
apparent by the controlling character of the synchronization
points both in the development cycle on product line and
product level by activities PL-Check and P-Check and
between the product line and product level by activities PL
to P and P to PL. In this way, it was possible to detect
architecture erosion in an early state and to take adequate
countermeasures. Furthermore, we can take care of a planned
generalization on the one hand and a planned specialization or
exceptional case handling on the other hand. This is evidenced
by the coordinator concept: A concept which was designed
and fully realized and proved by a pilot product and than
transferred into the product line architecture and finally fully
integrated within the next development iterations in the product
line architecture and all products belonging to this architecture.

VI. EVALUATION AND DISCUSSION

To evaluate our methodology, we present the quantitative
analysis for the BSU software development that is realized
and maintained in cooperation with our project partner over
a period of 5 years. In the following, we focus on the
applicability of the product line and product development
activities. Two criteria are important to evaluate. First, the
amount and kinds of modifications on architecture elements
calling this complexity controlling. Second, the amount and
kinds of design configurations calling this variant controlling.

Table II shows the result of the quantitative analysis. The
data record for the quantitative analysis refers to the develop-
ment of the BSU software and the product realizations con-
sisting of the BSU software and further vehicle functions. The
record contains the version control graph of the past 5 years of
BSU software development, called repository in the following.
Each node is a version of an architecture element or realized

50

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE II. RESULT OF THE QUANTITATIVE ANALYSIS FOR THE BSU
SOFTWARE FOR THE INTERVAL OF 5 YEARS.

Count Number Average Min. Max.
of ver- number of number of number of
sions versions versions versions
LAE 15 15 15/15 =1 1 1
MAE 15 58 58/15 ~ 4 1 6
Projects 21 146 146/21 = 7 1 12

product. Edges connect two subsequent versions. Table II
shows the number of logical architecture element (LAE) ver-
sions, of module architecture element (MAE) versions, and of
project versions from the record. Modifications were triggered
by the realization of BSU software PL-Requirements or
by the realization of products due to P-Requirements.

Table II shows the count of 15 LAE referring to mod-
ifications at the DESIGN layer and the count of 15 MAE
referring to modifications at the IMPLEMENT layer. The kind
of modifications refers to the connection structure and to the
architecture element structure of the appropriate MAE. Each
LAE is available in exactly one version in the repository.
Thereby, the current state of the logical architecture is repre-
sented which is unmodified since the beginning of the record.
Unfortunately, the data of prior development stages of the
BSU software logical architecture is not considered by the
record due to data protection reasons. In total, 58 versions for
MAE exist. A module element of the module architecture was
modified in minimum 1 time, in maximum 6 times, and in
average 4 times. Thereby, each version of the MAE is mapped
in this case to exactly one version of the appropriate LAE.

Line “Projects” in Table II refers to the product devel-
opment of the BSU software and shows that 21 projects
containing the BSU software exist. A project defines a set
of architecture element versions from logical architecture and
from module architecture used to realize a product. In the
following, we call the set of versions of architecture elements
design configuration. Each time a project is modified, a new
version of that project is committed to be used for subsequently
realize the product. The project modifications resulting in a
new version commit always refers to changes of the design
configuration. In total, the project version number is 146. The
average number of versions is 7, the minimum number is 1,
and the maximum number is 12.

The data in Table III shows two quantitative aspects. First,
the number of BSU software architecture element versions
used in projects is 46 and the cumulated number of BSU
software architecture element versions used in all project
versions is 1611. Hence, the average degree of reuse of
each version of MAE is 35. Second, the number of different
design configurations of all project version concerning the
BSU software is 14. This induces the fact that 14 architecture
structure variants of the BSU software architecture (logical and
module) are used in projects to realize products in the past 5
years.

Complexity controlling: Complexity in BSU software is in-
duced by modifications on architecture elements of the logical
architecture and the module architecture which are triggered to
realize the two kinds of requirements described by the record.
To handle complexity, each modification must be controlled for

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

TABLE III. FURTHER RESULTS OF THE QUANTITATIVE ANALYSIS FOR THE
BSU SOFTWARE.

Number of Cumulated number Average degree Number of
versions of versions used of reuse of used design
used in over all project each version configura-
projects versions tions

MAE 46 1611 1611/46 ~ 35 n/a
Projects n/a n/a n/a 14

violations on architecture elements and on violations referring
quality properties.

Our methodology aims to control violations of quality
properties in the Design activity and of violations of ar-
chitecture rules in the Check activity. The Design activity
provides the modified DESIGN layer in each iteration and
the Implement activity provides the modified IMPLEMENT
layer in each iteration. The BSU software modifications are
applied to realize requirements resulting in a product depen-
dent BSU software or in a new product independent realiza-
tion of the BSU software. Therefore, PL-Requirements
corresponding to new features triggers the controlling of BSU
software modifications during the product line development
activities, using the versions of logical architecture at the
DESIGN layer and of versions of module architecture at
the IMPLEMENT layer. New project related requirements
corresponding to P-Requirements triggers the product
development activities to control all modifications consider-
ing project related versions and architecture related versions
corresponding to the appropriate layers and of the EMAB
metamodel.

After applying the methodology two important results are
observed: First, no violations on architecture quality properties
at the DESIGN layer were found. Second, after checking the
modifications of the BSU software applying inter alia the
rule described by the EMAB metamodel in Section IV, no
violations between the layers of the BSU software are found,
too. This evaluation result shows that all modifications of
BSU software in the past 5 years preserved the architecture
conformance of the IMPLEMENT layer to the DESIGN layer.
Moreover, the structure of the DESIGN layer is well realized
considering the quality properties. Therefore, the DESIGN
layer remained unmodified.

Variant controlling: The term variant in the case of BSU
software describes a software architecture variant reused to
realize a software product. Thereby, each project version
refers to exactly one design configuration to define architec-
ture elements for reuse that are contained in the software
architecture variant. Modifications of the logical and module
architecture can introduce violations on expected derivable
structure variants. To handle such violations the control of
variants must be applied to the modifications. The control of
such architecture rule violations is applied during the Check
activity of the product line development considering the ver-
sions corresponding to the IMPLEMENT layer and to the
DESIGN layer. After applying our methodology, no violations
are found in the past 5 years of development. This corresponds
to the result of complexity evaluation where conformance of
the EMAB layers is confirmed.

51

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

VII. CONCLUSION AND FUTURE WORK

We proposed a holistic approach for a long-term man-
ageable and plannable software product line architecture for
automotive software systems. Our approach aims at a long-
term minimization of architecture erosion, and thereby guar-
antee a constant high degree of reusability. Thus, we pro-
pose concepts like architecture design principles, architecture
quality measurements, architecture compliance checking, and
further development scheduling with specific adaptations to the
automotive domain. The focus is on scalability, to manage a
huge number of variants in real world automotive systems.

We demonstrated our methodology on a real world case
study, a brake servo unit (BSU) software system from au-
tomotive software engineering. As a result, we could avoid
architecture erosion for several years. All further developments
have followed the originally planned architectural principles.
Moreover, we were surprised at the high number of reuse of the
modules: Each module was reused on average in 35 projects.
Even the high number of potential variants could be managed
with the approach.

As a future work, we aim at realizing a tool-chain which
enables the architecture description of the different archi-
tectures (PLA, PA, including versioning), the measure and
evaluation of quality attributes, as well as the integration of
the ArCh-Framework [12]. Appropriate abstraction techniques
are crucial to cope with the huge set of adjustable parameters
within the ECU software and to manage variability. Thus, we
are currently developing a concept including a prototypical tool
environment which enables the description and visualization of
variability.

REFERENCES

[11 B. Hardung, T. Kolzow, and A. Kriiger, “Reuse of Software in
Distributed Embedded Automotive Systems,” in Proceedings of the
4th ACM International Conference on Embedded Software, ser. EM-
SOFT’04. ACM, 2004, pp. 203-210.

[2] A. Rausch et al., “Managed and Continuous Evolution of Dependable
Automotive Software Systems,” in Proceedings of the 10th Symposium
on Automotive Powertrain Control Systems, 2014, pp. 15-51.

[31 B. Cool et al., “From Product Architectures to a Managed Automotive
Software Product Line Architecture,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, ser. SAC’16. ACM, 2016,
pp. 1350-1353.

[4] A. Pretschner, M. Broy, I. H. Kriiger, and T. Stauner, “Software
Engineering for Automotive Systems: A Roadmap,” in 2007 Future of
Software Engineering, ser. FOSE *07. IEEE Computer Society, 2007,
pp. 55-71.

[51 R. Cloutier et al., “The Concept of Reference Architectures,” Systems
Engineering, vol. 13, no. 1, Feb. 2010, pp. 14-27.

[6] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference Architec-
ture and Product Line Architecture: A Subtle but Critical Difference,” in
Proceedings of the 5th European Conference on Software Architecture,
ser. ECSA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 207-211.

[71 E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Refer-
ence Model for Reference Architectures,” in Proc. of the 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ser. WICSA-ECSA ’12. IEEE
Computer Society, 2012, pp. 297-301.

[8] E. Y. Nakagawa, M. Becker, and J. C. Maldonado, “Towards a Process
to Design Product Line Architectures Based on Reference Architec-
tures,” in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC *13. ACM, 2013, pp. 157-161.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a Process for the Design, Representation,
and Evaluation of Reference Architectures,” in Proceedings of the
2014 IEEE/IFIP Conference on Software Architecture, ser. WICSA ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 143-152.

L. de Silva and D. Balasubramaniam, “Controlling Software Architec-
ture Erosion: A Survey,” Journal of Systems and Software, vol. 85,
no. 1, Jan. 2012, pp. 132-151.

J. van Gurp and J. Bosch, “Design Erosion: Problems & Causes,”
Journal of Systems and Software, vol. Volume 61, 2002, pp. 105-119.

S. Herold and A. Rausch, “Complementing model-driven development
for the detection of software architecture erosion,” in Proceedings of
the Sth International Workshop on Modeling in Software Engineering,
ser. MiSE ’13. IEEE Press, 2013, pp. 24-30.

1. John and J. Dérr, “Elicitation of Requirements from User Documen-
tation,” in Proceedings of the 9th International Workshop on Require-
ments Engineering: Foundation for Software Quality (REFSQ’03), ser.
Essener Informatik Beitrige, vol. 8. Essen: Universitidt Duisburg-Essen,
2003, pp. 3-12.

H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley, 2004.

P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000.

S. Deelstra, M. Sinnema, and J. Bosch, ‘“Product derivation in software
product families: a case study,” Journal of Systems and Software,
vol. 74, no. 2, 2005, pp. 173-194.

J. Bosch, “Maturity and Evolution in Software Product Lines: Ap-
proaches, Artefacts and Organization,” in Proceedings of the Second
International Conference on Software Product Lines, ser. SPLC 2.
London, UK, UK: Springer-Verlag, 2002, pp. 257-271.

A. Strasser et al., “Mastering Erosion of Software Architecture in
Automotive Software Product Lines,” in SOFSEM 2014: Theory and
Practice of Comp. Sc., ser. LNCS, vol. 8327. Springer, 2014, pp.
491-502.

G. Holl, P. Griinbacher, and R. Rabiser, “A Systematic Review and an
Expert Survey on Capabilities Supporting Multi Product Lines,” Inf.
Softw. Technol., vol. 54, no. 8, Aug. 2012, pp. 828-852.

S. Thiel and A. Hein, “Modeling and Using Product Line Variability
in Automotive Systems,” IEEE Softw., vol. 19, no. 4, Jul. 2002, pp.
66-72.

H. Holdschick, “Challenges in the Evolution of Model-based Software
Product Lines in the Automotive Domain,” in Proceedings of the 4th
International Workshop on Feature-Oriented Software Development,
ser. FOSD ’12. ACM, 2012, pp. 70-73.

M. Steger et al., “Introducing PLA at Bosch Gasoline Systems: Expe-
riences and Practices,” in Software Product Lines. Springer, 2004, pp.
34-50.

The Standish Group International, Inc., “CHAOS Chronicles 2003
report,” West Yarmouth, MA, 2003.

C. Knieke and M. Huhn, “Semantic Foundation and Validation of Live
Activity Diagrams,” Nordic Journal of Computing, vol. 15, no. 2, 2015,
pp. 112-140.

H. Peters et al., “A Test-driven Approach for Model-based Development
of Powertrain Functions,” in Agile Processes in Software Engineering
and Extreme Programming. 15th International Conference on Agile
Software Development, XP 2014. Springer-Verlag, 2014, pp. 294—
301.

K. Beck, Test Driven Development. By Example.
Longman, 2002.

E. Lehmann, “Time Partition Testing,” Ph.D. dissertation, Fakultit IV
— Elektrotechnik und Informatik, TU Berlin, 2004.

F. P. Brooks, Jr., “No Silver Bullet Essence and Accidents of Software
Engineering,” Computer, vol. 20, no. 4, Apr. 1987, pp. 10-19.

Addison-Wesley

52

