
Pure Embedding of Evolving Objects

Max Leuthäuser

Software Technology Group
TU Dresden

Email: max.leuthaeuser@tu-dresden.de

Abstract—Scripting languages are extraordinarily popular due
to their very flexible object model. Dynamic extensions (i.e.,
adding, removing and manipulating behavior and state) allow
for the evolution and adaption of objects to context changes
at runtime. Introducing this flexibility into a statically typed,
object-oriented language would improve programmability and
separation of concerns beyond the level of what one could usually
gain with inheritance, mixins, traits or manually adapted design-
patterns. They often lead to object-schizophrenia or the need for
hand-crafted, additional management code. Although there were
already attempts bringing flexible objects into statically typed
languages with the benefits of an explicitly crafted core calculus
or type system, they need their own compiler and tooling which
limits the usability, e.g., when dealing with existing legacy code.
This work presents an embedding of dynamically evolving objects
via a lightweight library approach, which is pure in the sense,
that there is no need for a specific compiler or tooling. It is
written in Scala, which is both a modern object-oriented and
functional programming language. Our approach is promising
to solve practical problems arising in the area of dynamical
extensibility and adaption like role-based programming.

Keywords–Scala; evolving objects; object-oriented program-
ming; dispatch.

I. INTRODUCTION

Scripting languages like Python, JavaScript, Ruby, Perl
or Lua offer very flexible object semantics to the developer.
On the one hand side, programmers can rely on classical
object-oriented features, such as inheritance, encapsulation and
polymorphism, and on the other, they are able to add and
remove members (e.g., attributes and functions) from existing
objects or merge them at any given point in their life-cycle [1].

This is usually not available in statically typed object-
oriented languages. Imagine you have a client that wants to
execute some behavior at a (core-) object of interest but that
desired behavior is not available (Fig. 1). Using inheritance,
mixins, traits or design-patterns is not desirable. The first
three techniques will result in a very static system design and
exponentially many classes, while the use of patterns often
leads to object-schizophrenia [2] and the need of additional
management code. Adding and removing members from ex-
isting objects at runtime are indeed very useful operations for
todays software-systems, that have a very high demand for
adaptivity and need to cope with complexity and change [3].

Is bridging the gap between statically-typed, object-
oriented languages and evolving objects at runtime via pure
embedding possible without too much effort? To answer that,
the main contributions of this paper are:

• An introduction and summarizing technological overview
on SCROLL [4], a lightweight library that allows for pure
embedding of evolving objects in a modern, statically
typed object-oriented language (Scala [5]), utilizing only
those features that are available through its standard com-
piler. This library itself is small (∼1400 lines of code),
allows for easy integration of legacy code and a high sepa-
ration of concerns. It is limited on the side of type-safety
as one might expect. Nevertheless, having a statically-
typed host language for evolving objects supports the
developer with the best of both worlds: static typing leads
to an earlier detection of programming mistakes through
static code analysis, better documentation in form of type-
signatures, compiler-optimization, runtime-efficiency and
an improved design-time development experience, while
the latter supports easy prototyping, change to unknown
requirements or unpredictable data and application in-
tegration. In summary: “Static typing where possible,
dynamic typing when needed!” [6].

• An abstraction of that library into a more general im-
plementation pattern by requiring only three fairly basic
techniques to the host language.

• An example application showing that dynamically evolv-
ing objects are useful in the domain of role-based pro-
gramming.

Scala was chosen as host language for SCROLL not only
because of its combination of object-oriented and functional
programming features, but as well due to its scalability and
interoperability with the Java virtual machine providing easy
integration of legacy code and the use of already established
tools. SCROLL in particular takes advantage of Scala’s features
such as higher order functions, general operator notations, flex-
ible syntax, implicits, compiler rewrites and implicit definitions
of parameters.

The remainder of the paper is structured as follows. First,
we will introduce in Sec. II the way evolving objects can be
implemented with SCROLL. Additionally, the most important
application programming interface- (API-) calls are explained.
Following that, the actual implementation is described and
will be abstracted into a more general implementation pattern
by laying out its required three basic techniques (Sec. III).
The abstraction from roles to evolving objects is demonstrated
in Sec. IV and shows how role-based programming can be
handled as well. Finally, the SCROLL approach is compared
to more naive solutions using various design-patterns (Sec. V)
and other coeval approaches from the related work (Sec. VI).

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

CoreClient
uses

Problem

Call to behavior() will fail.
Not avaliable!

Apply the library
ExtensionB

behavior()

ExtensionA

ExtensionC

CoreClient
uses

Solution

Call dynamic extension
on the compound object

Figure 1. Problem: Imagine you have a client that wants to execute some behavior at a (core-) object of interest but that desired behavior is not available (see
left box). Solution: Applying the library allows for dynamically adding new behavior at runtime while wrapping all the extension parts (ExtensionA,

ExtensionB and ExtensionC) of the augmented object (Core) into one logical compound object (see right box).

E
xt

en
si

on
s

C
or

e

CoreBehavior

Service

move()

ExtensionA

Navigation

getTarget()

ExtensionB

Observer

readSensor()

ExtensionC

Vehicle

getActor()

Robot
name

Merge

Figure 2. The class Robot is constructed (dotted arrows) from different extensions and acquires the contained behavior.

II. EVOLVING OBJECTS IN SCROLL

This section provides a brief introduction into the way one
can use evolving objects as provided by SCROLL by example
(see Fig. 2 and 3). A standard Scala case class (Robot)
should be augmented with new behavior encapsulated in
three different extensions (ExtensionA, ExtensionB and
ExtensionC). Each of them provides a new aspect of
the robot via functions (like finding a target to move to
or observing sensor values) attached to case classes. This
allows for a high degree of separation of concerns with
multiple hierarchically nested components. The core behavior
(with case class Service) aggregates all of the provided
functionality without having to worry about its actual location.
There are several calls to SCROLL in the example. Those shall
be explained in the following:

• +-Operator (e.g., at line 6 in Fig. 3): In Scala,
method calls can be written as infix operators. +this
is equivalent to this.+(). Because extensions should
be merged into any given object, we cannot assume that
this object actually provides this +-operator. Thus, Scala’s
implicit conversion [7] is used to wrap the core object
into an equivalent compound object exposing the re-
quired programming interface. In summary, by calling the
+-operator the developer is able to forward arbitrary calls
to some extension he assumes should be available on the
core object without worrying about their actual location.

The function-lookup resolution technique is explained in
more depth in Sec. III.

• play (e.g., at line 32 in Fig. 3): This method attaches
the selected behavior to the core object. The name stems
from role-based programming, where roles can be seen as
some kind of dynamic extension (Sec. IV). There, playing
a role is equivalent to acquiring its behavior and state.

• Compartment (e.g., at line 3 in Fig. 3): A compartment
is an objectified collaboration with a limited number
of participating roles and a fixed scope [8] and stems
from role-based programming as well. It was introduced
to clearly distinguish from the heavily overloaded term
context. While a context (e.g., a cold and rainy day in
London) is prescriptive, without its own identity, intrinsic
behavior or existential parts and with an indefinite lifetime
- a compartment (e.g., a first-class train car) is descrip-
tive. Its instances carry identity, have behavior, state, a
defined lifetime and contain roles as its parts. Mixing
in the Compartment trait exposes SCROLL’s basic
programming interface to the current class. Contained
classes or case classes can be seen as containers for
new behavior and state that should be attached later on.
From the developer’s point of view, one could rewrite the
introductory sentence to “a compartment is an objectified
collaboration with dynamic behavior and state and a fixed
scope”.

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

• merge (e.g., at line 33 in Fig. 3): The relationship
between a core object and all of its extensions is stored
compartment-specific (as explained in Sec. III-C). So,
executing behavior spanning over multiple extensions
like in CoreBehavior requires a merging of all the
participating extensions (i.e. compartments) with their
specific storage.

When running the example code, the console output as
shown in Fig. 3 will be generated. There are several slightly
more advanced examples available online [9].

1 case class Robot(name: String)
2

3 object CoreBehavior extends Compartment {
4 case class Service() {
5 def move() {
6 val name: String = +this name()
7 val target: String = +this getTarget()
8 val sensorValue: Int = +this readSensor()
9 val actor: String = +this getActor()

10 info(s"I am $name and moving to the $target
↪→ with my $actor w.r.t. sensor value of
↪→ $sensorValue.")

11 }
12 }
13 }
14

15 object ExtensionA extends Compartment {
16 case class Navigation() {
17 def getTarget = "kitchen"
18 }
19 }
20

21 object ExtensionB extends Compartment {
22 case class Observer() {
23 def readSensor = 100
24 }
25 }
26

27 object ExtensionC extends Compartment {
28 case class Vehicle() {
29 def getActor = "wheels"
30 }
31 }

32 val myRobot = Robot("Pete") play Service() play
↪→ Navigation() play Observer() play
↪→ Vehicle()

33 CoreBehavior merge ExtensionA merge ExtensionB
↪→ merge ExtensionC

34 myRobot move()

35 I am Pete and moving to the kitchen with my
↪→ wheels w.r.t. sensor value of 100.

Figure 3. The robot is constructed from multiple extensions dynamically at
runtime. Running the example generates the console output shown above.

III. IMPLEMENTATION

This section explains the basic technologies used by
SCROLL for the pure embedding of evolving objects. Together,
these form an implementation pattern that is useful for adapting
this library approach to other host languages.

A. Implicit Conversions

We want to be able to mix in extensions to any given
object of any type in Scala. Implicit conversions [7] provide a

lightweight way to expose SCROLL’s programming interface
for adding, removing and transferring behavior or state to any
object. Listing 1 gives a brief excerpt.

1 implicit class Player[T](val wrapped: T) {
2 /* Applies lifting to Player */
3 def unary_+ : Player[T] = this
4

5 def play(role: Any): Player[T] = /* ... */
6 def drop(role: Any): Player[T] = /* ... */
7 def transfer(role: Any) = new {
8 def to(player: Any) { /* ... */ }
9 }

10

11 /* ... */
12 override def equals(o: Any) = /* ... */
13 }

Listing 1. The generic implicit class Player.

Scala’s implicit conversion is used to wrap the core object
into an equivalent compound object exposing the required
API in a type-safe manner. Furthermore, the issue of object-
schizophrenia needs to be addressed with a clear notion of
object identity. This term has not been introduced explicitly
by any publication, but appeared in a set of web-pages in the
field of context-oriented programming and can be described
like this: “Object Schizophrenia results when the state and/or
behavior of what is intended to appear as a single object are
actually broken into several objects (each of which has its
own object identity).” [10]. It can be seen as another instance
of the split object problem [11]. Here, the identity of an object
should be the same independent of which extension is attached.
Consequently, object identity should reflect this properly. Four
kinds of comparison are possible:

1) core == core + extension

2) core + extension == core

3) core + extension == core + extension

4) core + extensionA == core + extensionB

To implement this, we modify the identity-related method
of the compound object represented by Player as shown in
the above code-listing. In fact, == and the equals-method
are equivalent in Scala. That is, the expressions x == y and
x.equals(y) give the same result. We define the equals-
method in such way that it maps to the implementation of
the core object, and, in case the right-hand operator of ==
is an evolving object as well, compare with its core object.
This solves the problem for expressions 2 to 4, but unfortu-
nately does not for expression 1, since we cannot modify the
equals-method of arbitrary objects using a library approach.
If the comparison of a plain core object is required apply the
+-Operator (see Sec. II) to it. This will trigger the dynamic
conversion using the implicit class Player and applies the
desired comparison.

B. Dynamic Trait

Behavior and state from extensions that is not natively
available to the core object needs to be addressed somehow.
Scala’s Dynamic trait [12] is used to implement that be-
havior. Once the proper extension is identified and selected
(see Sec. III-C and III-D) the actual invocation should take
place. To do so, calls to extension-specific functionality, that

24Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

would normally fail during type-checking phase, are rewritten
according to the rules by the compiler itself [13] as shown in
Listing 2:
1 foo.method("blah")
2 foo.applyDynamic("method")("blah")
3

4 foo.method(x = "blah")
5 foo.applyDynamicNamed("method")(("x",

↪→ "blah"))
6 foo.method(x = 1, 2)
7 foo.applyDynamicNamed("method")(("x", 1),

↪→ ("", 2))
8

9 foo.field
10 foo.selectDynamic("field")
11 foo.variable = 10
12 foo.updateDynamic("variable")(10)

Listing 2. Compiler rewrite rules from the Dynamic trait [13].

That is exactly the point where type safety is lost. The
actual set of dynamic extensions that are bound to the core
object is not statically known, hence static type-safety is not
available. As an example, the method call to the robots name
attribute from Fig. 3 (line 6) is translated as shown in Listing 3.
1 +this.name
2 this.unary_+().name
3 new Player[Robot](this).name
4 new Player[Robot](this).selectDynamic("name")

Listing 3. Rewriting for dynamical access to the Robot attribute name.

SCROLL hooks into those rewritten methods and triggers
the actual invocation and error handling. We refrain from using
runtime exceptions or similar exception-based error handling in
case of not being able to find the functionality the developer is
querying for. Instead, Scala’s Either container type is used
by the library. It has two sub types, Left and Right. If
an Either[A,B] object contains an instance of A, then the
Either is a Left. Otherwise, it contains an instance of B and
it is a Right. Although, there is nothing in the semantics of
this type that would specify one or the other sub type to repre-
sent an error or a success, by convention it is used to carry the
error case as Left (e.g., DynamicBehaviorNotFound),
whereas the Right contains the success value (i.e., the result
of executing the dynamic behavior). Together with a sealed
type hierarchy with data types using case classes that represent
errors, very readable messages compared to actual stack-traces
from standard Java exceptions are generated.

C. Graph-based Backend

In SCROLL, a graph is used for storing the relations be-
tween core objects and its extension instances. That allows for
easy querying of extension-specific behavior that was attached
to the core object. Furthermore, there are many graph libraries
implementing various aspects like caching and distribution. In
general, a (labeled) graph H is a 4-tuple (V,E, Lab, LΣ) with:

• V is a finite set of vertices (nodes) with |V | ≥ 0,

• E is the set of edges, where E is a relation E ⊆ V × V ,

• LΣ is the set of labels and

• Lab : V ∪E → LΣ is the labeling function, which assigns
a label to each node in V and edge in E.

For SCROLL this can be adapted to:

• V is the set of objects (core and all extension instances),

• E is the set of relations between core objects and its
extension instances,

• LΣ is the set of type names for all objects in V and

• Lab : V → LΣ assigns each object in V its type.

JGraphT [14] was chosen as underlying graph library
providing already the necessary graph-theory objects like pre-
defined edge- and node-types, as well as simple algorithms
for traversing the graph. SCROLL abstracts from that making
it easy to plug-in any other convenient library, e.g., for easy
scaling or distribution of the graph if required. Another imple-
mentation making use of Google’s Guava framework [15] for
caching is available, too. That speeds up querying the core for
the actual behavior hidden in some extension if asked by the
client. Additionally, with Kiama’s pure embedding of attribute-
grammars in Scala [16], a third backend is provided. Querying
and updating the graph is implemented as (cached-) attributes
and rewrites respectively.

ExtensionA

behavior()

ExtensionB

x = 3

behavior()

Core

1 implicit val dispatchDescription =
2 From(_.isInstanceOf[Core]).
3 To(anything).
4 Through(anything).
5 Bypassing(_ match {
6 case ExtensionA() => true
7 case ExtensionB(x) if x == 3 => false
8 case _ => true // default case
9 })

Figure 4. An example for the need of customizable dynamic dispatch.

D. Customizable Dynamic Dispatch

Dispatching in adaptive systems is context-dependent. Se-
lecting the appropriate extension that should be selected for
answering a call to the required behavior may be ambiguous.
The developer should be able to key out the desired selection.
SCROLL supports this with function composition and Scala’s
pattern matching making use of an explicit dispatch description
which is passed down to the actual method invocation as
implicit argument. The given selection functions are applied
while traversing the graph-based storage holding the relations
between core objects and its extension instances. See Fig. 4
for an example. We construct a new dispatch description
using four factory methods provided by the API and pass our
selection functions into them. We are only interested in our
core object (_.isInstanceOf[Core]) so we are using
this for the From-selector. Now, lets assume we do not care
for the types of extensions that are actually around so we pass
anything to the To-selector, which will always evaluate to
true, so every extension instance will be considered while
traversing the graph. Same goes for Through on intermediate
nodes. Finally, for the Bypassing-selector we want to define
that an instance of ExtensionB with the state x = 3
should be selected, hence never bypassed. With an explicit

25Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

dispatch description, the developer defines a sub-graph of the
underlying graph as follows: let H = (V,E, Lab, LΣ) and
H ′ = (V ′, E′, Lab′, LΣ

′) be those storage graphs. Then H ′ is
a sub-graph generated for dispatching out of H with H ′ ⊆ H ,
if V ′ ⊆ V , E′ ⊆ E, Lab′ ⊆ Lab : V ′ ∪ E′ → LΣ

′ and
LΣ

′ ⊆ LΣ.

E. The SCROLL Implementation Pattern

So far, we have shown how arbitrary objects can be aug-
mented dynamically with new functionality or state grouped
together in extension. Moreover, obstacles arising from object-
schizophrenia can be solved with a compound object enabled
by dynamic conversions and an adapted notion of object
identity (i.e., the identity of an object should be the same
independent of which extension is attached). Using Scala’s
Dynamic trait together with a graph-based backend allows for
easy querying for behavior that is not natively available at the
core object. How to transfer and adapt this? An implementation
pattern is a reusable and adaptable solution to a certain problem
and shows best practice for developers while offering insights
to relationships and interactions between its components.

As introduced in the previous subsections, SCROLL re-
quires the concept of a marker trait (1) for triggering compiler
rewrites handing over calls to the library for finding behavior
that is not natively available at the core object. For assembling
a compound object from the core plus all its extension implicit
conversions (2) are needed. The storage of the relationships
between each individual core object and its extensions can be
done easily with any graph-based backend (3), or alternatively
with tables or maps. If one is able to find or emulate these
three techniques in the desired statically-typed, object-oriented
language it is easy to provide an alternative implementation of
SCROLL.

IV. SEPARATION OF CONCERNS

The main goal of having extensions to dynamically evolve
objects is the separation of different entity concerns while
being able to plug them altogether at runtime if a context-
dependent change to the system occurs. This not only increases
adaptability of the overall infrastructure, it improves separation
of concerns as well. That pretty much resembles the paradigm
and main goal of role-based programming. Although, the
concept of roles has been around for decades, starting in the
field of databases [17], the research landscape on it is very
diverse and fragmented.

Over time researchers have proposed several implemen-
tation approaches targeting the contextual nature of roles and
their representation at runtime. Unfortunately, until today there
is no common definition of what a role actually is. Most of the
resulting languages are reinventing the wheel over and over
again, implementing different role features for their specific
research area [8]. We argue that evolving objects (core objects
with addable or removable extension) are the generalization of
role-playing objects as a novel reuse and adaptability unit in
dynamic collaborations.

The following main features of roles extracted from the
literature [8], [18] can be fulfilled by evolving objects as
implemented by SCROLL while other coeval approaches will
fail to do so (this is explained in more depth in Sec. VI).

• Roles have properties and behaviors. An extension adds
new functionality or state to its core.

• Objects may acquire and abandon roles dynamically.
Adding and removing new behavior is the main idea of
evolving objects. In particular, a role can be transferred
from one object to another.

• Objects may play the same role (type) several times.
With the grouping of extension in compartments as first-
class citizens representing contextualized collaborations,
one can easily allow for attaching multiple instances of
the same extension type in different contexts to one core
object.

As a brief example for applying SCROLL for role-based
programming, see Fig. 5 and 6. We implement a manual
transport (class ManualTransport) of a Person with a
Car to a certain Location by augmenting these core classes
with being a NormalCar and a Driver respectively. For
the autonomous transport (class AutonomousTransport),
it is the SmartCar and Passenger with different behavior
for driving or using the brakes. Target and Source roles
added to locations are used in the actual transportation by the
method travel() in TransportationRole. That role
will augment a specific transportation (either the manual or
the autonomous one) and alters its behavior. All important
API-calls (like the +-Operator or play) are explained in
Sec. II. Note, that the query-function one[SomeType]()
(e.g., on line 18 in Fig. 5, right side) allows for querying
exactly one instance of the given type that should be contained
in the current instance of a Compartment.

In summary, with respect to the effects on separation of
concerns, both role-playing objects and dynamically evolv-
ing objects as generalization provide a handy abstraction of
context-dependent dynamic behavior and state.

V. COMPARISON WITH MANUAL IMPLEMENTATIONS AND
PATTERNS

The following section demonstrates the advantages of the
proposed library approach for pure embedding of evolving
objects by comparing it to simple, manually instantiated im-
plementations and design patterns widely used when people
try to cope with the required dynamics [19]. For a summary,
see Table I.

The most basic solution would be to use one Single Type
for your core object and all extensions. If they do not differen-
tiate in behavior and you do not plan for future changes, that
would be a valid solution without any over-engineering. On
the downside, that leads to one single complex type, that may
be hard to maintain later on. If extensions introduce many
different features, one may think about implementing them
as Separate Types. That removes coupling and unnecessary
tangling of relationships between them. Sadly, it introduces the
duplication of features and a loss of integrity with shared state
and behavior. Using Subtypes for every extension and putting
the common things into the supertype for each extension may
overcome this issue while being conceptually simple. On the
downside the resulting inheritance hierarchy may be hard to
adapt with multiple or changing extensions as each of them
requires the interface of the supertype to be changed as well.

26Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

1 class Person(val name: String)
2 class Car(val licenseID: String)
3 class Location(val name: String)
4

5 class Transportation() extends Compartment {
6 object AutonomousTransport extends Compartment

↪→ {
7 class SmartCar() {
8 def drive() {
9 info("I am driving autonomously!")

10 }
11 }
12 class Passenger() {
13 def brake() {
14 info(s"I can’t reach the brake. I am

↪→ ${+this name} and just a
↪→ passenger!")

15 }
16 }
17 }
18

19 object ManualTransport extends Compartment {
20 class NormalCar() {
21 def drive() {
22 info(s"I am driving with a driver called

↪→ ${+one[Driver]() name}.")
23 }
24 }
25 class Driver() {
26 def brake() {
27 info(s"I am ${+this name} and I am hitting

↪→ the brakes now!")
28 }
29 }
30 }
31

32 class TransportationRole(source: Source,
↪→ target: Target) {

33 def travel() {
34 val kindOfTransport = this player match {
35 case ManualTransport => "manual"
36 case AutonomousTransport => "autonomous"
37 }
38 info(s"Doing a $kindOfTransport

↪→ transportation with the car
↪→ ${one[Car]().licenseID} from
↪→ ${+source name} to ${+target
↪→ name}.")

39 }
40 }
41

42 class Target()
43 class Source()
44 }

1 new Transportation {
2 val peter = new Person("Peter")
3 val harry = new Person("Harry")
4 val googleCar = new Car("A-B-C-001")
5 val toyota = new Car("A-B-C-002")
6

7 new Location("Munich") play new Source()
8 new Location("Berlin") play new Source()
9 new Location("Dresden") play new Target()

10

11 harry play new ManualTransport.Driver()
12 toyota play new ManualTransport.NormalCar()
13

14 +toyota drive()
15 ManualTransport play
16 new TransportationRole(
17 one[Source]("name" ==# "Berlin"),
18 one[Target]()
19) travel()
20

21 peter play new AutonomousTransport.Passenger()
22 googleCar play new

↪→ AutonomousTransport.SmartCar()
23

24 +googleCar drive()
25 AutonomousTransport play
26 new TransportationRole(
27 one[Source]("name" ==# "Munich"),
28 one[Target]()
29) travel()
30

31 +peter brake()
32 +harry brake()
33 }

Figure 5. The SmartCar example (instance code, top) and the corresponding
model code (left).

1 I am driving with a driver called Harry.
2 Doing a manual transportation with the car A-B-C

↪→ -002 from Berlin to Dresden.
3 I am driving autonomously!
4 Doing a autonomous transportation with the car A-

↪→ B-C-001 from Munich to Dresden.
5 I can’t reach the brake. I am Peter and just a

↪→ passenger!
6 I am Harry and I am hitting the brakes now!

Figure 6. Running the example generates the console output shown above.

The classification of domain objects inheritance introduces
is static. An alternative to that, would be to use the Role-
Object-Pattern [20]. The core object now has a multi-valued
association to its extensions as separate types with a com-
mon supertype. This is a very direct implementation without
the need of changing some interface when introducing new
extensions. It can become complicated when dealing with
constraints between those extensions and again, with shared
state. Additionally, object-schizophrenia needs to be targeted
explicitly which applies to extensions when trying to imple-
ment them with the Role-Object-Pattern. One has to deal with
method call dispatch, encapsulation and object comparison
manually [21]. We continue with Multiple Inheritance or
Traits. Although these concepts are semantically fine to im-

plement extensions, they will lead to a very static system again
with an exponential blowup in the number of required classes
for every new context one needs to add. Additionally, parallel
object hierarchies may occur where cross-tree constraints are
very hard to maintain. Delegation on the other hand mimics
the inheritance mechanism on object level. This requires (the
generation of) a lot of management code and leads to object-
schizophrenia, too. Finally, Delegation-Layers define layers
that group behavior for sets of objects and for sets of classes.
Sadly, it implies fixed hierarchies and thus a system design
that is too static.

27Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

Table I. COMPARISON OF APPROACHES FOR ESTABLISHING DYNAMIC OBJECTS AT RUNTIME (SOLELY BASED ON [19]). � INDICATES
THAT THERE IS A PROBLEM IN THE GIVEN CATEGORY. PLEASE NOTE, THAT THIS COMPARISON ONLY CONSIDERS APPROACHES THAT

DO NOT RELY ON CUSTOM COMPILERS, GENERATORS OR OTHER TOOLING.

Si
ng

le
co

m
pl

ex
ty

pe

Sh
ar

ed
St

at
e

/
B

eh
av

io
r

Sc
al

ab
ili

ty

In
te

rf
ac

e

C
ha

ng
e

C
on

st
ra

in
ts

O
bj

ec
t

Sc
hi

zo
ph

re
ni

a

E
xp

on
en

tia
l

bl
ow

up

St
at

ic
D

es
ig

n

Pa
ra

lle
l

H
ie

ra
rc

hi
es

M
an

ag
em

en
t

C
od

e

Single Type � � � � �

Separate Type � � � �

Subtype With Internal Flag � � � � � � � �

Subtype With Hidden Delegation � � � � � � � �

Subtype With State Object � � � � � � �

Role Object Pattern � � � �

Multiple Inheritance / Traits � � � � �

Delegation / Delegation Layers � � � �

VI. RELATED WORK

This section summarizes and compares how different run-
time environments or technical spaces could be used to realize
evolving objects.

A. Evolving objects with other statically-typed, object-oriented
languages

First, SCROLL requires the concept of a marker trait, i.e.,
a mixin to an object for triggering compiler rewrites handing
over calls to the library for finding behavior that is not natively
available at the core object (trait Dynamic, as explained in
Sec. III-B). Second, a technical solution for assembling a
compound object from the core plus all its extension bypassing
object-schizophrenia [2] is needed. Third requirement is the
storage of the relationships between each individual core
object and its extensions, which should be easy with any
graph-based backend, or alternatively with simple tables or
maps. If one is able to find or emulate these three techniques
in the desired statically-typed, object-oriented language it is
easy to provide an alternative implementation of SCROLL. In
conclusion, this proposed implementation pattern (requiring
the before-mentioned three basic technologies) is applicable
to many host languages. With the ExpandoObject [22] C# can
be considered as the most promising option to provide such
an implementation of SCROLL in another language. The Ex-
pandoObject represents an object that allows for dynamically
adding and removing its members at runtime. However, this
works at another level of granularity compared to SCROLL.
Only single members, like a function or an attribute, can be
attached or removed at a single point in time. With SCROLL
you are allowed to group them together (e.g., into classes, case
classes or objects) and add or remove all contained members
at once. Better separation of concerns is achieved that way.

B. Evolving objects with Aspect- / Subject-oriented program-
ming languages

Aspect-oriented programming allows to implement cross-
cutting concerns via join-points and pointcuts. Often the com-
position is done statically although there exist a few dynamic

approaches. ObjectTeams/Java (OT/J) [23] uses dynamic as-
pect weaving at bytecode-level for adding behavior. Subject-
oriented programming utilizes different class hierarchies from
different perspectives. On the downside there is no real compo-
sition language and the set of composition operators is fixed.
Furthermore, no real control flow on the composition itself
exists.

C. Evolving objects with role-based programming languages

Although dynamically evolving objects are the more gen-
eral concept compared to role-playing objects as outlined
in Sec. IV, we consider them to be useful for a technical
realization as well. Interestingly, most of the existing role-
based programming languages are extensions to Java. They
are either compiled to Java source code [24], [25], [26], [27]
or to bytecode [23] directly.

Chameleon [24] provides roles through constituent meth-
ods allowing to overwrite methods of their players, which
work like advices in aspect-oriented programming. As a major
drawback of Chameleon its roles extend the player to gain
access to it, which is conceptually wrong [18] and limits the
flexibility of roles. Rava [25] overcomes this by employing
the Role-Object-Pattern [20] extended with the Mediator-
Pattern [28]. They use special keywords to steer the generation
of management code. Due to the use of the Role-Object
Pattern and generation to plain Java, this solution suffers from
object-schizophrenia [29]. JavaStage [27] solves this problem,
by only supporting static roles. They are directly compiled
into the players as inner classes. To avoid name clashes, a
customizable method renaming strategy is applied. Its main
advantages are the capability to specify a list of required
methods instead of a specific player class. This approach limits
itself to static roles as well, unable to represent their relational
and context-dependent nature. Rumer [30] offers first-class
relationships and modular verification over distributed state.
Furthermore, it provides several intra-relationship constraints
usable to restrict these relationships. Roles are the named
places of a relationship with attributes and methods but without
inheritance. Roles are only accessible within a relationship

28Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

and not from their player. ScalaRoles [31] is probably the
closest relative to SCROLL. It is implemented as Scala library
as well and utilizes dynamic proxies (from the Java API) to
implement roles. The practical implementation using Scala‘s
traits as roles reveals the problem that the order of role
binding influences the resulting type, e.g., a person playing
the father role first and then the student role is another
type than the same person playing those roles the other way
around. The most sophisticated and mature approach so far is
ObjectTeams/Java (OT/J) [23]. Like Chameleon above, OT/J
allows to override methods of a player by aspect weaving.
It introduces Teams to represent compartments whose inner
classes automatically become roles. Notably, OT/J supports
both the inheritance of roles and teams whereas the latter leads
to family polymorphism [32]. On the downside, it does neither
support multiple unrelated player types for a role type nor
first class relationships and only a limited form of constraints.
This is similar to powerJava [33], which also introduces com-
partments, denoted Institutions, whose inner classes represent
roles. However, powerJava features the distinction between
role interface and role implementation where the former is
callable from outside a specific institution and the latter is
the institution-specific implementation of the same interface.
Both Rava and powerJava are the only research prototypes
providing a working compiler. Sadly, the project has been
abandoned [34]. A more recent approach towards context-
oriented programming is NextEJ [35] as the successor of
EpsilonJ [36]. It provides Contexts as first class citizens which
do not only group roles but also represent an activation scope
at runtime. These context activation scopes can be nested and
act as a barrier where all roles are instantiated and bound
automatically. So far, they only published their type-system
of the core calculus and no compiler.

In summary, it is necessary to investigate how well the
implementation with SCROLL for binding roles as technical
realization for evolving objects blends into contemporary ap-
proaches. We use an already published classification scheme
from the literature [8], [18]. A compact overview is given in
Table II. Most of the role features in question are supported.

VII. FUTURE WORK

Several developments are currently work in progress or
targeted for investigation in the near future. Because the actual
set of dynamic extensions that are bound to a core object
can not be statically determined, static type-safety is lost
at a certain point as already mentioned in Sec. III-B. The
SCROLLCompilerPlugin [38] is a plugin for the standard Scala
compiler and runs right after its typing phase. It allows for
validating the source code (i.e., traversing the syntax tree)
and generates meaningful warnings and errors, e.g., if the
developer is requesting behavior from a dynamic extension
that was never bound. In interdisciplinary collaborations, we
aim for other use-cases for applying the concept of dynam-
ically evolving objects. They should help the domain expert
to cope with its specific implementation concerns. Specif-
ically in systems biology, and more generally in scientific
computing (e.g., with a Next-Generation Parallel Particle-
Mesh Language [39]) using this concept looks promising. The
separation of concerns achieved this way greatly improves
the quality of code written in these field of research. With
respect to the required performance, methods for translating

Table II. COMPARISON OF COEVAL APPROACHES FOR ROLES AT
RUNTIME BASED ON 26 CLASSIFYING FEATURES EXTRACTED

FROM THE LITERATURE [8], [18]. IT DIFFERENTIATES BETWEEN
FULLY (�), PARTLY (�) AND NOT SUPPORTED (�) FEATURES.

Fe
at

ur
e

[8
]

C
ha

m
el

eo
n

[2
4]

O
T

/J
[2

3]

R
av

a
[2

5]

po
w

er
Ja

va
[2

6]

R
um

er
[3

0]

Sc
al

aR
ol

es
[3

7]

N
ex

tE
J

[3
5]

Ja
va

St
ag

e
[2

7]

SC
R

O
L

L

1. � � � � � � � � �

2. � � � � � � � � �

3. � � � � � � � � �

4. � � � � � � � � �

5. � � � � � � � � �

6. � � � � � � � � �

7. � � � � � � � � �

8. � � � � � � � � �

9. � � � � � � � � �

10. � � � � � � � � �

11. � � � � � � � � �

12. � � � � � � � � �

13. � � � � � � � � �

14. � � � � � � � � �

15. � � � � � � � � �

16. � � � � � � � � �

17. � � � � � � � � �

18. � � � � � � � � �

19. � � � � � � � � �

20. � � � � � � � � �

21. � � � � � � � � �

22. � � � � � � � � �

23. � � � � � � � � �

24. � � � � � � � � �

25. � � � � � � � � �

26. � � � � � � � � �

the specific binding and behavior-lookup for dynamic objects
to a native and fast performing technological platform need to
be developed. Another promising direction is the investigation
of the invokedynamic bytecode keyword introduced with
Java 7 to provide an alternative to SCROLL. An appropriate
implementation and comparison of those two approaches in
terms of runtime-efficiency and improvement design-time de-
velopment experience is currently targeted.

VIII. CONCLUSIONS

In summary, this work presents an attempt to bridge the
gap between statically-typed, object-oriented languages and
evolving objects at runtime by introducing SCROLL as a
lightweight library that allows for pure embedding of dynam-
ically evolving objects in a modern, statically typed object-
oriented language. Arbitrary objects can be augmented with
extensions allowing for adding and removing behavior and
state at runtime. They are combined to one logical compound
object through the library solving object-schizophrenia. The
library allows for easy integration of existing (Java Virtual
Machine based) legacy code and a high separation of concerns,
e.g., when applied to roles in contexts. Ultimately, following
the rules of the proposed implementation pattern as the core
idea of SCROLL one could easily implement a very similar
library in another host language.

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

ACKNOWLEDGMENT

This work is funded by the German Research Founda-
tion (DFG) within the Research Training Group “Role-based
Software Infrastructures for continuous-context-sensitive Sys-
tems” (GRK 1907) and in the Collaborative Research Center
912 “Highly Adaptive Energy-Efficient Computing”. Special
thanks go to Sebastian Götz, Ulrike Schöbel and Anthony
Sloane for improving this paper.

REFERENCES

[1] P. H. Menon, Z. Palmer, A. Rozenshteyn, and S. Smith, “Types for
flexible objects,” Technical report, The Johns Hopkins University, Tech.
Rep., 2013.

[2] U. Aßmann, Invasive Software Composition. Springer-Verlag, 2003.
[3] J. F. Furrer, “Zukunftsfähige Softwaresysteme,” Informatik-Spektrum,

2015, pp. 1–9. [Online]. Available: http://dx.doi.org/10.1007/
s00287-015-0909-6

[4] M. Leuthäuser, “SCROLL,” https://github.com/max-leuthaeuser/scroll,
2016, [last viewed 01.12.2016, 09.00].

[5] EPFL, “Scala Website,” http://www.scala-lang.org/, 2016, [last viewed
01.12.2016, 09.00].

[6] E. Meijer and A. Peter Drayton, “Static typing where possible,”
Dynamic Typing When Needed: The End of the Cold War Between
Programming Languages, 2004.

[7] M. Odersky, L. Spoon, and B. Venners, “Programming in scala: a
comprehensive stepby-step guide,” Artima Inc, August, 2008.

[8] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann,
“A metamodel family for role-based modeling and programming
languages,” in Software Language Engineering, ser. Lecture Notes in
Computer Science, B. Combemale, D. Pearce, O. Barais, and J. Vinju,
Eds. Springer International Publishing, 2014, vol. 8706, pp. 141–160.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11245-9 8

[9] M. Leuthäuser, “SCROLL Examples,” https://github.com/
max-leuthaeuser/SCROLL/tree/master/examples/src/main/scala/scroll/
examples, 2016, [last viewed 01.12.2016, 09.00].

[10] B. Harrison, “Subject-oriented Programming vs. Design Patterns,” http:
//www.research.ibm.com/sop, 1997, [archived as of May 1997].

[11] C. Dony, J. Malenfant, and P. Cointe, “Prototype-based languages:
From a new taxonomy to constructive proposals and their validation,”
in Conference Proceedings on Object-oriented Programming Systems,
Languages, and Applications, ser. OOPSLA ’92. New York,
NY, USA: ACM, 1992, pp. 201–217. [Online]. Available: http:
//doi.acm.org/10.1145/141936.141954

[12] EPFL, “Scala Dynamic Trait SIP,” http://docs.scala-lang.org/sips/
completed/type-dynamic.html, 2016, [last viewed 01.12.2016, 09.00].

[13] EPFL, “Scala Dynamic Trait ScalaDoc,” https://github.com/scala/
scala/blob/2.12.x/src/library/scala/Dynamic.scala, 2016, [last viewed
01.12.2016, 09.00].

[14] B. Naveh and Contributors, “jGraphT,” http://jgrapht.org/, 2016, [last
viewed 01.12.2016, 09.00].

[15] Google, “Guava,” https://github.com/google/guava, 2016, [last viewed
01.12.2016, 09.00].

[16] A. M. Sloane, L. C. Kats, and E. Visser, “A pure embedding of attribute
grammars,” Science of Computer Programming, vol. 78, no. 10, 2013,
pp. 1752–1769.

[17] C. W. Bachman, “The programmer as navigator,” Commun. ACM,
vol. 16, no. 11, 1973, pp. 635–658.

[18] F. Steimann, “On the representation of roles in object-oriented and
conceptual modelling,” Data & Knowledge Engineering, vol. 35, no. 1,
2000, pp. 83–106.

[19] M. Fowler, “Dealing with roles,” in Proceedings of PLoP, vol. 97, 1997.
[20] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “The role object

pattern,” in Washington University Dept. of Computer Science, 1997.
[21] S. Herrmann, “Demystifying object schizophrenia,” in Proceedings of

the 4th Workshop on MechAnisms for SPEcialization, Generalization
and inHerItance. ACM, 2010, p. 2.

[22] Microsoft, “Expando Object,” https://msdn.microsoft.com/en-us/
magazine/ff796227.aspx, 2016, [last viewed 01.12.2016, 09.00].

[23] S. Herrmann, “Programming with roles in ObjectTeams/Java.” AAAI
Fall Symposium, Tech. Rep., 2005.

[24] K. B. Graversen and K. Østerbye, “Implementation of a role lan-
guage for object-specific dynamic separation of concerns,” in AOSD03
Workshop on Software-engineering Properties of Languages for Aspect
Technologies, 2003.

[25] C. He, Z. Nie, B. Li, L. Cao, and K. He, “Rava: Designing a java
extension with dynamic object roles,” in Engineering of Computer
Based Systems, 2006. ECBS 2006. 13th Annual IEEE International
Symposium and Workshop on. IEEE, 2006, pp. 7–pp.

[26] M. Baldoni, G. Boella, and L. van der Torre, “Roles as a coordination
construct: Introducing powerjava,” Electr. Notes Theor. Comput. Sci,
vol. 150, no. 1, 2006, pp. 9–29.

[27] F. S. Barbosa and A. Aguiar, “Modeling and programming with roles:
introducing javastage,” Instituto Politécnico de Castelo Branco, Tech.
Rep., 2012.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson Education,
1994.

[29] S. Herrmann, “Demystifying object schizophrenia,” in Proceedings of
the 4th Workshop on MechAnisms for SPEcialization, Generalization
and inHerItance, ser. MASPEGHI ’10. New York, NY, USA: ACM,
2010, pp. 2:1–2:5.

[30] S. Balzer, T. Gross, and P. Eugster, “A relational model of object
collaborations and its use in reasoning about relationships,” in ECOOP,
ser. Lecture Notes in Computer Science, E. Ernst, Ed., vol. 4609.
Springer, 2007, pp. 323–346.

[31] M. Pradel and M. Odersky, “Scala roles: Reusable object collaborations
in a library,” in Software and Data Technologies. Springer Berlin
Heidelberg, 2009, pp. 23–36.

[32] S. Herrmann, C. Hundt, and K. Mehner, “Translation polymorphism in
object teams,” TU Berlin, Tech. Rep., 2004.

[33] E. Arnaudo, M. Baldoni, G. Boella, V. Genovese, and R. Grenna, “An
implementation of roles as affordances: powerJava,” Aug. 31 2009.

[34] G. Wielenga, “On powerjava: ”roles” instead of ”objects”,”
https://blogs.oracle.com/geertjan/entry/on powerjava roles instead of,
jan 2013, [Online; accessed 28-May-2014].

[35] T. Kamina and T. Tamai, “Towards safe and flexible object adaptation,”
in International Workshop on Context-Oriented Programming. ACM,
2009, p. 4.

[36] T. T. S. Monpratarnchai, “The design and implementation of a role
model based language, EpsilonJ.” in Proceedings of the 5th International
Conference on Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (ECTI-CON 2008), 2008.

[37] M. Pradel and M. Odersky, “Scala Roles - A lightweight approach to-
wards reusable collaborations,” in International Conference on Software
and Data Technologies (ICSOFT ’08), 2008.

[38] M. Leuthäuser, “SCROLLCompilerPlugin,” https://github.com/
max-leuthaeuser/SCROLLCompilerPlugin, 2016, [last viewed
01.12.2016, 09.00].

[39] S. Karol, P. Incardona, Y. Afshar, I. F. Sbalzarini, and J. Castrillon,
“Towards a next-generation parallel particle-mesh,” in Proceedings
of the 3rd Workshop on Domain-Specific Language Design and
Implementation (DSLDI 2015), T. van der Storm and S. Erdweg,
Eds., 2015, vol. abs/1508.03536, pp. 7–8. [Online]. Available:
http://arxiv.org/abs/1508.03536

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-532-6

ADAPTIVE 2017 : The Ninth International Conference on Adaptive and Self-Adaptive Systems and Applications

