
Hints to Address Concurrency in Self-Managed Systems at the Architectural Level  
A Case Study

Francesco Mazzei and Claudia Raibulet 
Università degli Studi di Milano-Bicocca 

DISCo - Dipartimento di Informatica, Sistemistica e Comunicazione 
Milan, Italy 

e-mail: f.mazzei3@campus.unimib.it, raibulet@disco.unimib.it

 
Abstract—Self-managed systems are able to perform changes 
by themselves on themselves during their execution due to 
variations occurred internally or in their execution 
environment. Current solutions for self-managed systems 
address one change at a time. In the real world, two or more 
changes may raise contemporaneously. Hence, they should be 
addressed concurrently and not sequentially. This would 
improve the overall performances of a system and would avoid 
delays in addressing changes. In this paper, we propose 
architecture level mechanisms to address concurrency in self-
managed systems. We investigate available concurrency 
solutions used in non self-managed systems and adopt and 
adapt them for self-managed systems. We also introduce novel 
concepts such as: adaptation zone, adaptation need, and 
adaptation level. To apply and validate our solution a case 
study in a Web banking context has been developed.  

Keywords-self-adaptivity; concurrency; architecture. 

I.  INTRODUCTION 
Over the years, systems have grown in size and 

complexity and many of them are required to run 
continuously. Therefore, it has become important to develop 
systems that are able to manage and adapt themselves at 
runtime in response to changing requirements and 
environmental conditions. Examples of situations in which 
self-managed systems may offer a valid solution are 
identified in [12]: (1) systems should run continuously in the 
presence of components’ faults, variability in resources, or 
variability of users’ needs, (2) administrative overheads 
should be reduced allowing smooth operation with minimal 
human oversight, and (3) systems should provide various 
levels of services to different users depending on their needs 
and context.  

Current solutions consider that systems address one 
change at a time. In the real world, two or more changes may 
occur contemporaneously. Several issues may raise here: is it 
possible to address them concurrently? If yes, under which 
conditions (considering that modifications are performed at 
runtime and systems should provide the functionalities for 
which they have been designed independent of the 
computation performed for their self-management issues). If 
no, how to establish their priority for changes' execution? 
Hence, how to address two or more changes at a time in a 
self-managing system?  

Engineering self-managed systems is not a trivial task 
[3][5][9]. Addressing one change at a time is complex. 
However, it is easier to reason about one change at a time: no 
synchronization or consistency issues should be considered. 
Addressing two or more changes at a time becomes a 
significant issue. Each change should leave the self-managed 
system in a stable state. A question may raise here: is it 
worth the effort considering the possible benefits of 
addressing concurrent issues? David Garlan mentions two 
possible benefits: (1) improvement of the performances of 
the self-managed systems through the parallelization of the 
changes, and (2) provision of an immediate feedback when 
change needs raise. For example, if a self-optimization task 
is running in the system, and a self-healing issue occurs in 
the meantime, it is desirable that the last is addressed 
immediately independent of the fact that the first continues 
its execution or should be stopped or finished immediately.  

As far as concerns our knowledge, there is no available 
solution for engineering self-managed systems that 
implements concurrency mechanisms to manage 
contemporaneously two or more changes. The closest 
solutions take into consideration multiple objectives when 
deciding which change to perform in the system [2]. 
However, the multiple objectives are summarized into a 
single change. 

The objective of this paper is to investigate the available 
concurrency mechanisms which have been defined for 
traditional systems and which can be adopted and/or adapted 
for self-adaptive systems. Examples of mechanisms for 
addressing concurrency issues include prioritization, 
scheduling, architectural and design patterns. This work aims 
also to validate the identified solutions through a common 
and actual case study. 

The rest of the paper is organized as follows. Section II 
presents the main concepts used in our solution. Section III 
presents a case study using the previously introduced 
concepts. The paper ends with the Conclusions and Future 
Developments presented in Section IV. 

II. MAIN CONCEPTS OF OUR SOLUTION 
Prof. David Garlan mentioned concurrency [7] as one of 

the future challenges of self-managed systems at SEAMS 
2013. The potential benefits of exploiting concurrency 
concern performance and rapid response when new self-
managing issues arise. He also suggested three ideas on how 
to manage concurrency in such systems: 

59Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



• non-interference guarantee between concurrent 
adaptations; 

• possible interruptions of ongoing adaptations, when 
higher-priority adaptations occur; 

• possible finish of unproductive adaptations.  
Starting from these course-grained ideas, we try to 

expand them and to provide fine-course possible hints. 
In the remaining of this section, we introduce the main 

concepts on which our solution is based: Monitor-Analyze-
Plan-Execute (MAPE) loop, adaptation zone, adaptation 
process, adaptation need, and adaptation level. 

A. The MAPE Loop 
Architectural-based solutions for self-managed systems 

exploit feedback concepts and control mechanisms [3][5]. 
The feedback enables a system to understand its current 
state and its execution environment by monitoring itself and 
its surrounding world. To achieve this the system collects 
meaningful data through various sensors and/or 
mechanisms, data which is further analyzed by the system. 
The control enables a system to be active and perform 
changes on itself in correspondence of variations in its 
execution environment. To achieve this a system chooses 
the most appropriate changes to be performed in its current 
state and implements mechanisms to apply the identified 
changes.  

The feedback control loops consist in the following four 
steps: Monitoring, Analyzing, Planning, and Executing 
(MAPE) [5]. 

B. Adaptation Zone 
An adaptation zone indicates a part of a system which 

may be subject to changes at runtime. In other words, an 
adaptation zone indicates the co-related elements of a 
system which may be involved in a type of adaptation at 
runtime. A zone is a mutable, a dynamic part of a system. 

At the architectural level, an architectural adaptation 
zone may be composed of components, packages, classes, 
interfaces. Each architectural adaptation zone is identified 
using a name that reminds the type of adaptation in that 
zone. It is possible to use, for example, the name of each 
adaptation use case for the corresponding zones. 

From the concurrency point of view, if two or more 
adaptations occur in disjoint architectural adaptation zones 
they may be executed in parallel without any further 
concurrency issue. Otherwise, if two or more adaptations 
occur in the same architectural adaptation zone, concurrent 
issues, such as shared resources problem, should be 
considered and a mutual exclusion solution is needed. To 
address this issue we define the runtime adaptation zone. At 
runtime, many instances of a system's element may be 
created (e.g., objects). An adaptation may use only part of 
the instances available in an architectural adaptation zone. 
Hence, we introduce the concept of runtime adaptation zone 
to group together the instances of the system's elements of 
an adaptation zone used actually in an adaptation.  

A runtime adaptation zone may be in one of the 
following states:  
• green, meaning that in the runtime adaptation zone every 

object is unlocked, or rather no adaptations are running 
in the zone; when an adaptation finds the green color, it 
will run and use objects without any constraint; 

• yellow, meaning that in the runtime adaptation zone one 
or more objects are in use by other adaptation(s); an 
adaptation may run in this zone only if it uses objects 
that are not locked by the other adaptation(s); 

• red, meaning that in the runtime adaptation zone every 
object is locked, or rather one or more adaptations are 
running in this zone using all objects; when an 
adaptation finds the red color, it will wait until the 
objects it plans to use will be unlocked. 
A runtime adaptation zone may modify its state going in 

one of the remaining two states without following any 
particular sequence.  

C. Adaptation Process 
An adaptation consists in a change in a system. It is the 

result of a  feedback control process composed of four main 
steps: monitoring, analyzing, planning, and executing. Each 
of these steps may be complex and may require several 
entities for its implementation. In our solution, we have 
defined four managers, each supervising one step of the 
adaptation process. The Adaptation Monitor gathers the data 
describing the current state of the execution environment of 
a system (both the system itself and its external world). The 
Adaptation Analyzer verifies the current state of a system 
and identifies the variations which may require a change in 
a system. These two entities must run for the entire lifetime 
of the system and they continuously or periodically check 
the state of a system. 

From the concurrency point of view, there are no 
particular issues in these two steps. The monitoring step 
may gather concurrently data from various sources 
regarding various aspects. The analyzing step may verify 
concurrently various data to reveal variations.  

The planning step is managed by the Adaptation 
Planner. The planning step identifies the change to be 
performed and the strategy to apply the identified change in 
a system. A strategy is composed of a set of operations 
required to adapt a system to a need starting from its current 
state. The Adaptation Planner is the manager of the 
adaptation strategies. To develop interchangeable strategies, 
the Strategy design pattern is used.  

From the concurrency point of view, the Adaptation 
Planner may manage in parallel two or more adaptations 
each considered separately. It works similarly to the 
Adaptation Monitor and Adaptation Analyzer with the 
difference that it is activated only when an adaptation is 
needed in a system.  

When the Adaptation Planner has decided which is the 
most appropriate strategy to be applied for the current 
adaptation, it has to be performed. This is the most 

60Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



important part of the concurrent adaptation mechanism 
considered in this paper. In self-managed systems in which 
there is no concurrency, the adaptation is performed without 
any particular issues and complexity. But, in this case, more 
than one adaptation may be needed at the same time. 
Therefore, this part of the solution must have specific 
attributes that characterize every adaptation in order to 
compare them. Hence, we have introduced an entity that 
represents the execution of an adaptation: the Adaptation 
Performer. 

The Adaptation Performer is the entity that has the 
responsibility to apply the strategy selected by the 
Adaptation Planner. It is the element that applies in a system 
those operations that compose the strategy (see Figure 1). 

 

Figure 1. The Adaptation Performer and the Adaptation Planner 

From the concurrency point of view, it has been asserted 
that each adaptation involves only a specific architectural 
zone, hence one of the Adaptation Performer's attribute is 
the architectural adaptation zone in which the adaptation has 
to be applied (see Figure 2). Two or more Adaptation 
Performers can adjust a system concurrently if they involve 
different architectural adaptation zones. Furthermore, due to 
the runtime adaptation zones, if performers involve the same 
architectural zone, but not the same set of objects, they can 
run concurrently. However, when they need the same zones 
and the same objects, they must be compared among them, 
to determine which should be run, interrupted, or stopped. 
An entity like a scheduler can do the comparison. To 
achieve this goal, it is necessary to understand the 
characteristics of each adaptation and which of those it is 
useful for the comparison. It has been defined a particular 
attribute that groups some important characteristics, and it is 
called Adaptation Need (see Section II.D). 

 

 
Figure 2. Adaptation Performer with the Architectural Adaptation Zones 

D. Adaptation Need 
An adaptation may be of various types: self-

configuration, self-optimization, self-protection, self-
healing. and so on. Each of these types has a different 
importance for a system. Generally, a self-healing or a self-
protection adaptation have the greater importance. 
Obviously, this importance depends strongly on the 
application domain. Based on these affirmations, the first 
attribute that characterizes an adaptation is its type. Based 
on the type attribute it is possible to define a hierarchy of 
priorities for adaptations for each system.  

With the type attribute a first comparison is done among 
Adaptation Performers. However, if two or more performers 
have the same type, other attributes are needed to prioritize 
them. A second attribute consists in the adaptation Strategy 
which has been chosen by the Adaptation Planner. A 
strategy has associated a static priority (e.g., as the priority 
of the create, update, insert, delete operations in a database). 
Further, a strategy spends an estimated time to perform its 
operations, so it has a considerable importance for the 
comparison. Thus, Time is the third and last element that 
characterizes an adaptation need. It estimates how much 
time a strategy needs to be completely performed (see 
Figure 3). Based on the application domain, the highest 
priority may be assigned to the strategy having the minor 
estimated time, or the major estimated time. 

To summarize, two steps are performed to compare two 
or more Adaptation Performers:  
• step 1: use type to compare two or more Adaptation 

Performers; 
• step 2: if type is identical, use strategy and time to 

compare two or more Adaptation Performers.  
Due to this two steps comparison, it is possible to decide 

which process has to be run, interrupted, or stopped. 
 

Figure 3. The Adaptation Need with Type, Strategy and Time 

If a performer has to be interrupted, a mechanism to 
interrupt and resume it, is needed. A scheduler can do the 
comparison between the performers that will run in the same 
architectural adaptation zone with the same objects and it 
can choose if a performer has to be interrupted and then 
resume it. It is possible that the scheduler interrupts more 
than one Adaptation Performers, so it must have a queue of 
interrupted processes. To allow the scheduler to choose 
which performer has to be resumed, the Adaptation Need 
requires another attribute, called last interrupt.  

61Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



Last interrupt (see Figure 3) defines the last time that a 
performer has been interrupted (e.g., the timestamp). Every 
time the scheduler has to choose which Adaptation 
Performer has to be resumed, it sorts the queue of 
performers by last interrupt and chooses the performer that 
has the oldest timestamp. 

However, in an application there could be more aspects 
to take into account to resume a performer. Therefore, for 
each application the last interrupt can be used in 
combination with other application’s elements. 

E. Adaptation Level 
If one or more processes have to be interrupted or 

stopped, a stability problem may occur in the system. An 
adaptation cannot be interrupted or stopped anytime, but it 
must do this leaving a system in a stable state. 

The Adaptation Performer adapts the system performing 
the Adaptation Strategy’s operations. To guarantee the 
stability, any operation can become an atomic step, in order 
to allow the interruption (or the stop) after the ending of an 
operation and before the beginning of another. Clearly, if 
some sub-steps compose an operation, they must be all 
executed without stopping. In Stitch [1] language, strategies 
are composed by tactics. For our solution, we consider that 
those atomic operations, which compose an Adaptation 
Strategy, are called tactics. 

Furthermore, it is also possible to estimate how much a 
system has been adapted, according to the number of tactics 
performed. This is an adaptation value, and it was named 
Adaptation Level. 

For example, if three tactics compose the Adaptation 
Performer strategies, the Adaptation Level can be: 
• Low-level: the performer has completed only one tactic; 
• Medium-level: the performer has completed two tactics; 
• High-Level: the performer has completed three tactics. 

This is an easy example, but the Adaptation Level can be 
usually divided into the three levels. To estimate at which 
level a performer has adapted a system, it is possible to 
calculate with percentage notation the operations performed 
(e.g., 34%, 67%, 100%) or any other solution that the 
system’s engineer considers appropriate. The Adaptation 
Level is useful to provide information about a system and a 
system’s adaptation. Furthermore, a system may take 
information about its adaptation, to dynamically add, 
modify or remove an Adaptation Strategy and modify the 
estimated Time of an adaptation.  

The objects in each zone are in a stable state if there are 
no Adaptation Performers running tactics over them. Hence, 
there are three definitions of stable states, object for the 
objects, local for the zone, and global for the entire system. 
• Object stable state: an object is in a stable state if it is 

not used by an Adaptation Performer; 
• Local stable state: a zone is in a stable state if no object 

is used by an Adaptation Performer (the runtime zone is 
in a green state); 

• Global stable state: the system is in a stable state if all 
the runtime zones are in a green state. 
Therefore, an Adaptation Performer can be interrupted 

between a tactic and another, when it leaves all the involved 
objects in a stable state. It is important to understand that 
each performer has not the responsibility of the entire 
system’s stability (or the zones’ stability), but it only has to 
care about the objects that it involves. 

So with all of these definitions, an Adaptation Performer 
can perform the strategy’s operations and it can be 
interrupted or stopped when necessary. 

III. THE UNIBANK CASE STUDY 
The solution presented in the previous section has been 

validated through a case study, a home banking system, 
called Unibank. The solution implements two possible 
adaptation types: an architectural one (e.g., addition/removal 
of servers) and a content one (e.g., visualization of textual 
and/or multimedia content). The current version of the 
solution enables (1) the concurrent execution of two or more 
adaptation processes if they involve different architectural 
zones, (2) the interruption of an adaptation process if another 
one arise in the same adaptation zone with a higher priority, 
or (3) the ending of an adaptation process under certain 
conditions. 

Unibank is a home banking system that provides several 
services to its customers (e.g., register, create a bank 
account, visualize the history of the operations performed, 
do a transfer, require a credit card). In such a system, there 
are various aspects which can be properly addressed through 
self-managed solutions. For example, the variations in the 
system may concern the number of clients' requests, the 
number of replicated servers the system uses, the available 
bandwidth, the type of the clients' devices used to 
communicate with the system.  

In the remaining of this section, we present two types of 
adaptations in which concurrency based concepts are 
efficiently exploited. Both types of adaptations are triggered 
by the variations of the number of clients' request. To ensure 
a constant level of quality, the system may decide to 
add/remove a replicated server, and/or, vary the quality of 
the content visualization (e.g., visualize multimedia 
information and/or only textual information). Further, we 
introduce briefly the architectural aspects of our solution.  

A. Variation of the Number of Servers 
The number of clients’ requests continuously change, 

from a low level to a high level. It means that if the number 
of requests is high, the system needs a greater number of 
replicated servers to handle them. Vice versa, if the number 
of requests is low, the system needs a lower number of 
servers, to reduce the services’ costs. It is also possible that 
one or more servers crash, so other servers are needed to 
handle the current number of requests. 

Every home banking system must guarantee a 365/24 
service, regardless of the requests’ level and servers status. 
However, every system has a cost and a budget limit, so 

62Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



they have also a number of running servers limit. In fact, 
there is a limited server pool from which to add or remove a 
specific server.  

Hence, in an architectural server-based adaptation, there 
are two strategies: add one or more servers, and remove one 
or more servers. This type of adaptation and these two 
strategies are very similar in their execution. In the 
following, one of them is described step-by-step as an 
example: 

1) Adding servers according to clients’ requests 
1. The Adaptation Monitor supervises the number of the 

clients' requests.  
2. The Adaptation Analyzer reveals an increase of the 

number of clients’ requests. 
3. The Adaptation Planner chooses a strategy: add a 

specific number of servers.  
4. In the execution step, the Adaptation Performer adds 

every server needed (if the pool has available the 
requested number of servers). 

B. Variation of the Quality of Content Visualization 
For many reasons, the architectural server-based 

adaptation is not always available (e.g., all the available 
servers are functioning). Therefore, if the number of clients’ 
requests increases and the adaptation process cannot add 
replicated servers, it may vary the quality of the content 
visualization to allow the handling of every request. Vice 
versa, if the number of requests decreases the adaptation 
process can improve the quality of the content visualization. 

Hence, in a variation of quality of content visualization 
adaptation there are two strategies: improve the quality of 
the content visualization, and reduce the quality of the 
content visualization. 

This type of adaptation and these two strategies are very 
similar in their execution. In the following, one of them is 
described step-by-step as an example: 

1) Improve the quality of contents visualization 
according to the number of clients’ requests 
1. The number of client’s requests has decreased; 
2. When the Adaptation Process starts in the monitoring 

step, it reveals the number of requests; 
3. The process passes to the analyzing step and it now 

knows that the actual number of servers and quality of 
contents visualization are too much to handle requests; 

4. In the planning step, the Adaptation Process chooses a 
strategy: improve the quality of contents visualization; 

5. In the execution step, the process puts the quality of 
contents visualization in a higher level. 

C. Architectural Aspects 
The architecture of the Unibank system is presented in 

Figure 4. The two grey elements indicate two different 
architectural adaptation zones. Currently, these architectural 
adaptation zones are defined statically at design time.  

The Adaptation Monitor and the Adaptation Analyzer 
have been implemented as Singletons because they are quite 

simple in this case study: they monitor and analyze the 
number of the clients'  requests.   

Once that the data is checked and an adaptation is 
required, the Adaptation Process goes to the planning step. 
The Adaptation Planner is the element that represents the 
planning step, thus it decides how to adapt the system, 
according to the result of the Adaptation Analyzer.  

To allow the handling of multiple adaptations, the 
Adaptation Process creates an independent (asynchronous) 
instance of the planner. Hence, after the analyzing step, the 
Adaptation Planner continues the adaptation process. The 
Adaptation Planner is a thread that is created only if an 
adaptation is needed. 

When the Adaptation Planner is created, it has to choose 
how the adaptation has to be performed. It has been initially 
decided that there are only two types of adaptation in this 
case study (architectural server-based adaptation and quality 
of the content visualization) and each type has only two 
strategies to be performed (add/remove server and 
improve/reduce quality). Therefore, the Adaptation Planner 
has a link to those strategies, and it chooses (1) the kind of 
adaptation required, and (2) the suitable strategies. 

To choose the strategy, the Adaptation Planner uses the 
result that the Adaptation Analyzer has returned after the 
analyzing step. Even if, in this case study, there are only four 
strategies, it was designed a reflection mechanism to allow a 
dynamic update of strategies. Once the strategy has been 
selected, the planner creates an instance of it. The Adaptation 
Strategy prepares the object that will perform the adaptation, 
the Adaptation Performer. 

Such as for the strategies, there is not only one 
Adaptation Performer. Each performer has to run in a 
particular zone of the system and it uses only that zone’s 
objects. For this reason, there was designed a Strategy design 
pattern to implement the performers. Each performer is 
associated to one zone, so in this case study we have two 
Adaptation Performers: ServerAdaptationPerformer and 
JspAdaptationPerformer. 

The Adaptation Performer executes the strategy tactic-
by-tactic [1][6], so that it can be stopped between a tactic and 
another. Tactics are atomic operations that compose a 
strategy and the number of tactics performed by a performer 
gives the Adaptation Level. Therefore, appropriate tactics 
were defined for the Adaptation Strategies. For the quality of 
content visualization strategies (improve quality and reduce 
quality), a tactic was implemented for each reachable 
visualization quality level, which improves or reduces the 
quality of the contents. This case study was designed with 
three levels of quality of content visualization. Hence, the 
Adaptation Level is incremented for each improved or 
reduced quality level gained. For the architectural server-
based structural strategies (add server and remove server) it 
was defined a tactic based on the number of servers to add or 
remove. If a performer has to add three servers, the tactics 
that compose this strategy are three. Hence, the Adaptation 
Level is incremented for each added or removed server. 

To handle the concurrency adaptations and so multiple 
performers, which will run concurrently to adapt the system, 

63Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



in Unibank it was designed an Adaptation Scheduler. The 
scheduler has the objective of handle every Adaptation 
Process; it compares them to choose which adaptation 
process has to run, to stop or to interrupt. Two processes that 
involve two different architectural zones can run 
concurrently, each scheduler handles only the processes that 
run in a specific zone.  

Each scheduler is a Singleton. The Adaptation Planner 
receives the Adaptation Performer from the Adaptation 
Strategy and then it communicates with the appropriate 
scheduler to add the performer. The Adaptation Scheduler 
uses the performer’s Adaptation Need to compare it with the 
other performers that are running in a specific area. 

The routine used to compare and manage the performers 
is based on the runtime adaptation zones and Adaptation 
Need concept. To simplify, only the performers’ stops were 
considered and not the interruptions. However, it is only one 
of the multiple solutions that are achievable with these 
notions. 

When the Adaptation Planner adds a performer to the 
scheduler, the scheduler starts to check the performer’s 
attributes. The Adaptation Scheduler checks first how many 
performers are running in its zone. If no performer is running 
(so the runtime zone is in a green state) the scheduler can run 
the new Adaptation Performer, otherwise it has to check 
which objects the new performer has to use to adapt the 
system (the runtime is in a yellow or red state). If the objects, 
which the new performer has to involve, are in use by other 
performers, the Adaptation Scheduler has to compare the 
priority of the new performer with those of the other 
performers.  

If the priority of the other running performers is lower, 
then the scheduler has to interrupt or stop them and to start 
the execution of the new performer. Recall that an 
Adaptation Performer cannot be interrupted or stopped 
anytime, but it can be stopped after the end of a tactic and the 
start of another, that is because every performer must leave 
the objects in a stable state. 

If the priority of the other running performers is higher, 
then the scheduler has to reject the adaptation, because other 
most important performers (and so adaptations) are running. 

If the priority is the same, the scheduler has to compare 
the Time and the Strategy to choose which performer has the 
highest priority. This application has a strategy’s priority 
hierarchy for each type of adaptation. For server structural 
adaptation: add server and remove server. And for quality of 
contents visualization adaptation: improve quality of 
contents and reduce quality of contents. 

Therefore, when the type of two performers is the same, 
the Adaptation Scheduler compares the strategy and then 
uses the same previous routine. When also the strategies are 
the same, the scheduler gives priority to the shorter 
performer according to its Time attribute. When two 
performers are completely equal, the Adaptation Scheduler 
chooses the performer that was added first. 

IV. CONCLUSIONS AND FURTHER WORK 
The work presented in this paper has addressed 

concurrency issues in self-adaptive systems by focusing on 
how two or more adaptation needs which occur in the same 
time interval can be properly managed. The issues raised by 
this topic are mainly due to the fact that the system should 
address two or more adaptations by itself during its 
execution. Each adaptation should leave the system in a 
stable state. Making two changes in a system may be risky 
also when the system is in the development phase, while 
during its execution is a challenge.  

Several concepts have been used in this paper such as 
adaptation need, adaptation process, adaptation level, 
adaptation strategies and tactics, and priorities. Further novel 
concepts have been introduced for addressing concurrency: 
architectural adaptation zone and runtime adaptation zone. 
Our solution will be further refined by considering issues and 
solutions proposed in various fields such as Self-Organizing 
Networks (SON) mechanisms for future wireless networks, 
i.e., LTE [4].  

The solution has been validated through a case study 
called Unibank, implementing a home banking application. 
Two types of adaptations have been considered: architectural 
(e.g., the changing number of the used servers) and content-
based (e.g., the changing of the content type - textual and 
multimedia - displayed to the user). The solution enables (1) 
the concurrent execution of two or more adaptation 
processes if they involve different architectural zones, (2) the 
interruption of an adaptation process if another one arise in 
the same runtime adaptation zone with a higher priority, or 
(3) the ending of an adaptation process under certain 
conditions. In the further work, we plan to validate our 
solution in other case studies and application domains and to 
use available tools and approaches for formal validation.  

In this paper, we have defined architectural zones, 
architectural levels, adaptation strategies, and adaptation 
types statically at design time. A future work plans to 
introduce flexibility in the definition of architectural zones, 
and enable their definition and/or modifications at runtime. 

Another further work concerns the availability of various 
access devices. Today every person has more types of 
Internet-connected devices ranging from smartphones and 
tablets to laptops and desktops. To overcome the 
visualization problems for different types of devices, we use 
Bootstrap, which supports responsive Web design. The 
layout of Web pages adjust dynamically, taking into account 
the characteristics of the device used for the access of 
Unibank. This kind of adaptation is different from the ones 
presented in this paper, being not jet included in the 
adaptation process of Unibank. 

Finally, we plan to measure the performances of our 
solution addressing concurrent issues considering quality 
attributes [8][10] and software metrics [11].  

 

64Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications



Figure 4. Unibank Architecture 
  

REFERENCES 
[1] S. W. Cheng and D. Garlan, "Stitch: A language for 

architecture-based self-adaptation". Journal of Systems and 
Software, vol. 85, 2012, pp. 1860-2875. 

[2] S. W. Cheng, D. Garlan, and B. Schmerl, "Architecture-based 
Self-Adaptiation in the Presence of Multiple Objectives", 
SEAMS 2006, pp. 2-8. 

[3] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. 
Magee, Software Engineering for Self-Adaptive Systems. 
LNCS 5525, Springer, 2009. 

[4] L. Ciavaglia, Z. Altman, E. Patouni, A. Kaloxylos, N. 
Alonistioti, K. Tsagkaris, P. Vlacheas, and P. Demestichas, 
"Coordination of Self-Organizing Network Mechanisms: 
Framework and Enablers", Mobile Networks and 
Management, Lecture Notes of the Institute for Computer 
Sciences, Social Informatics and Telecommunications 
Engineering, Vol 97, 2012, pp 174-184. 

[5] R. de Lemos, H. Giese, H. Muller, and M. Shaw, Software 
Engineering for Self-Adaptive Systems II, Lecture Notes in 
Computer Science 7475, Spinger, 2012. 
 
 
 

 
[6] D. Garlan, S. W. Cheng, A. C. Huang, and B. Schmerl, P. 

Steenkiste, "Rainbow: Architecture-based Self-Adaptation 
with Reusable Infrastructure". IEEE Computer, Vol. 37, No. 
10, IEEE Computer Society Press, 2004, pp. 46-54. 

[7] K. E. Harper, J. Zheng, and S. Mahate, "Experiences in 
Initiating Concurrency Software Research Efforts". 32nd 
International Conference on Software Engineering, vol. 2, 
2010, pp. 139-148. 

[8] S. Neti, and H. Müller. "Quality Criteria and Analysis 
Framework for Self-Healing Systems", ICSE Workshop on 
Software Engineering for Adaptive and Self-Management 
Systems, 2007. 

[9] C. Raibulet, "Facets of Adaptivity". 2nd European Conference 
on Software Architecture, LNCS 5292, 2008, pp. 342-345. 

[10] C. Raibulet. "Hints on Quality Evaluation of Self-* Systems", 
8th IEEE International Conference on Self-Adaptive and Self-
Organizing Systems, London, UK, September 8th-12th, 2014. 

[11] P. Reinecke, K. Wolter and A. Van Moorsel. Evaluating the 
Adaptivity of Computing Systems, Performance Evaluation 
Journal, Vol. 67, pp. 676-693. 2010. 

[12] T. Seceleanu and D. Garlan, "Synchronized Architectures for 
Adaptive Systems". 29th Annual International Computer 
Software and Applications Conference. Edinburgh, UK, 2005, 
pp. 146-151. 

 

65Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications


