
Ontology-based Automatic Adaptation of Component Interfaces

in Dynamic Adaptive Systems

Yong Wang, Dirk Herrling, Peter Stroganov, and Andreas Rausch

Department of Informatics

Technical University Clausthal

Clausthal-Zellerfeld, Germany

e-mail: yong.wang, dirk.herrling, peter.stroganov, andreas.rausch@tu-clausthal.de

Abstract—Dynamic adaptive systems are systems that change

their behavior at runtime. Behavioral changes can be caused

by user’s needs, or based on context information if the system

environment changes. The Dynamic Adaptive System Infra-

structure (DAiSI) has been developed as a platform for such

systems. It is a run-time infrastructure that operates on com-

ponents that comply to a DAiSI-specific component model.

DAiSI-based systems are “open” by design. The run-time

infrastructure can integrate components into the system that

were not known at design-time. To control the system configu-

ration of such an open and self-organizing system, a configura-

tion service has been developed that can make use of applica-

tion blueprints to ensure application architecture conform-

ance. Components in a DAiSI system communicate with each

other through services. Services are described by domain inter-

faces, which have to be specified by the component developer.

Components can utilize services, provided by other compo-

nents as long as the respective required and provided interfac-

es are compatible. However, sometimes services seem to be

doing the same thing, e.g., provide the same data or operations,

but differ on a syntactical level. Therefore, in this article, we

present an approach which enables the use of syntactically

incompatible services. We developed an ontology-based meth-

od for the generation of an adapter that connects services,

which provide the right data in the wrong format. In this pa-

per we present a method to describe interfaces of components

and an algorithm to automatically generate adapters between

them.

Keywords—component models; self-adaptation; dynamic

adaptive systems; ontology.

I. INTRODUCTION

An increasing interest in dynamic adaptive systems could
be observed in the last two decades. A platform for such
systems has been developed in our research group for more
than ten years. It is called Dynamic Adaptive System Infra-
structure (DAiSI). DAiSI is a component based platform that
can be used in self-managed systems. Components can be
integrated into or removed from a dynamic adaptive system
at run-time without causing a complete application to fail. To
meet this requirement, each component can react to changes
in its environment and adapt its behavior accordingly.

Components are developed with a specific use-case in
mind. Thus, the domain interfaces describing the provided
and required services tend to be tailored to a very specific

application. This effect limits the re-use of existing compo-
nents in new applications. One measure to minimize re-
developing existing components is to increase reusability.
The reuse of existing components is one key aspect in soft-
ware engineering. However, re-using components in other
application contexts than they have been originally devel-
oped for is still a big challenge. This challenge gets even
bigger, if such components should be integrated into dynam-
ic adaptive systems at run-time.

A valid approach to tackle this challenge is adaptation.
Because of the dynamic adaptive nature of DAiSI applica-
tions, DAiSI components are considered as black boxes.
Their capabilities and behavior are specified by interfaces
that describe required– and provided services. In this ap-
proach, we suggest a solution to couple provided and re-
quired services that are syntactically incompatible. On a
semantical level, the provided service does offer the needed
data or operations. To be able to utilize a specific provided
service, we suggest to construct an adapter that enables in-
teroperability between services that are only compatible on
some semantical level.

The goal of an adapter is to enable communication be-
tween two formerly incompatible components. In order to
translate different representations of data, a common
knowledge-base is needed. In this work we use a central
ontology as the common knowledge-base. To illustrate that
this approach is suitable for adaptive systems, we extend our
DAiSI infrastructure by an ontology-based adapter engine
for service adaptation. To strengthen the dynamic adaptive
nature of the DAiSI, we generate these adapters at run-time.
We argue that these adapters cannot be generated at compile
time, as the different components that should interact with
each other are not known at compile time, but only at inte-
gration time, which is the same as run-time in dynamic adap-
tive systems.

The rest of this paper is structured as follows: In Section
II, we describe the already sketched problem in more detail.
Section III gives an overview of relevant related work. In
Section IV, we give a short overview of the DAiSI compo-
nent model and a few hints for further reading. Section V
explains, how the adaptation of services with the help of an
ontology works. In Section VI, the algorithm for the adapter
generation is shown in more detail, before the paper is
wrapped up by a short conclusion in Section VII.

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

II. PROBLEM DESCRIPTION

Whenever a dynamic adaptive application is developed,
the interfaces between the components are specified at an
early stage. They are very domain specific and their defini-
tion is driven by the use cases of the future application in
mind. On the other hand, many applications run in a shared
context with other applications from different domains.

Harmonizing one large interface pool among different
developers from different vendors that operate in different
domains is a tedious task, which often results in a slow
standardization process. This slows the development process
down and, especially in dynamic adaptive systems, dimin-
ishes the chances for the development of new applications.
Developers will in those cases often start their own interface
pool. This, on the other hand, reduces the chances to re-use
existing components from other domains.

Additionally, the management of one central interface
pool in a distributed system does not scale well. One way to
mitigate this issue would be a de-centralization. To tackle
these challenges, we propose to keep the domain interfaces
un-harmonized. To be able to use a service across domains,
we propose to adapt syntactically incompatible services by
on-the-fly generated adapters. To be able to do so, we require
every interface pool to use an ontology. By either merging
these ontologies later on, or by using distributed ontologies
we ensure that interfaces from different interface pools share
a common semantic.

Components offer provided services. To be able to do so,
they may require others and thus, specify required services.
Provided and required services stand in relation to each oth-
er, mapping which required services are necessary to pro-
duce which provided services. In the graphical notation for
DAiSI components provided services are marked as filled
circles, required services are noted as semi-circles (similar to
the UML lollipop notation [13]) and the relation between
those two are marked as bars across the component, linking
provided and required services (cf. Figure 1).

Domain

<<interface>>
RequiredService

<<interface>>
ProvidedService

Component development

config 1

config 2

config 1

Figure 1. DAiSI components and domain-specific interface definitions.

We propose that services that are semantically compati-
ble, but lack compatibility on a syntactical level, should be
usable. We suggest to generate adapters between the differ-
ent services and define three different adaptation scenarios to

face the following three types of incompatibility: Different
Naming, Different Data Structure, and Different Control
Structure. We believe that we can connect all semantically
compatible but syntactically different services using these
three types of adapters.

A. Different Naming

By “Different Naming” we denote cases in which the
names of interfaces describing services or names of functions
do not match. While they are syntactically different, their
names share the same semantics and could be used synony-
mous. The first example, depicted in Figure 2, shows two

interfaces: PowerInfo and PowerQuality. They are
named differently, but offer the same functionality. Each of

them defines one of the following methods: update, and

save respectively. The names of their parameters are identi-
cal and so are the return types.

Figure 2. Example of two interfaces with Different Naming.

B. Different Data Structure

In this type of conflict, the names of the interfaces and
their functions are the same. However, the parameters differ
in their data types. The encapsulated data however is similar
and the data structures can be mapped to each other. In Fig-
ure 3 in the Different Data Structure example an interface

PowerQuality1 is depicted. It contains a function

saveGridInfo which processes a parameter of the type

GridData. In the interface PowerInfo1, there are two
other functions with the same name but with two different
input parameters.

Figure 3. Example of two interfaces with a Different Data Structure.

C. Different Control Structure

In this case, the functions of two different interfaces can

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

not be mapped directly to each other. To obtain valid results,
the control structure has to be modified. In the example in

Figure 4, two interfaces UserInterface and UserMan-

ager are given. By definition a username should be com-
posed of the first– and the last name of a person. As such, the

two functions getFirstName and getLastName from

the UserManager interface in comparison provide the

same information as getUsername from the UserIn-

terface interface.

Figure 4. Example of two interface requiring Different Control Structures.

To enable the mapping between interfaces, a common
knowledge-base is needed. Because of the issues stated earli-
er, it should not be mandatory that both sets of interface
definitions are of the same domain. A common knowledge-
base defined by ontologies can be generated using merging
or other integration mechanisms on classical ontology lan-
guages or by using a distributed ontology language. Both
interfaces do not need to contain information on how to
interpret the data of each other. That means that interfaces
can be developed independently, without knowing anything
about a possible re-use in another system.

III. RELATED WORK

A dynamic adaptive system is a system that adjusts its
structure and behavior according to the user’s needs or to a
change in its system context at run-time. The DAiSI is one
example of an infrastructure for dynamic adaptive systems
[4][7][15][17]. It has been developed over more than a dec-
ade by a number of researchers. This work is based on DAi-
SI and extends the current run-time infrastructure.

According to a publication of M. Yellin and R. Storm,
challenges regarding behavioral differences of components
have been tackled by many researchers [22]. The behavior of
the interface of a component can be described by a protocol
with the help of state-machines. The states of two involved
components are stored and managed by an adapter. In further
steps of this method, an ontology is used as a language li-
brary to describe a component’s behavior. To automate the
adaptation of services, a semi-automated method has been
developed to generate adapters with the analysis of a possi-
ble behavioral mismatch [5][20].

Another solution for the connection of semantically in-
compatible services is presented in [5]. They used buffers for
the asynchronous communication between services and
translated the contents of those buffers to match the syntacti-
cal representations of the involved services. The behavioral
protocols of services can automatically be generated with a
tool that is based on synthesis– and testing techniques [18].
Ontologies are used in their method to describe the behavior

of components and to create a tool for automated adaptation
[8]. However, some components require a very complex
state-machine; the development of which can easily become
very expensive. Thus, in this work, we present another way
that does not rely on the consideration of dependencies with-
in the behavior or the involved interfaces.

The method of transformation of an ontology into inter-
faces is already integrated into Corba Ontolingua [11]. With
this tool an ontology can be transformed into the interface
definition language (IDL). A. Kalyanpur [21] has developed
a method which allows automatic mapping from Web On-
totolgy Language (OWL) to Java. The Object Management
Group (OMG) [13] has defined how to transform the Unified
Markup Language (UML) into an ontology. With their
method, UML classes are first converted into a helper class
and then transformed into an ontology [19]. G. Söldner [12]
has shown how to transform the UML itself into an ontology.
A downside of the above methods: The interface and the
ontology have a strong relation. If a developer changes the
ontology, all interfaces which are linked to this ontology
have to be modified. In this work, we decoupled this strong
relation. Alternating a part of the ontology now only affects
the interfaces directly linked to it.

Matching and merging existing ontologies is still a big
challenge regarding its speed and accuracy. To simplify this,
many application interfaces (APIs) have been developed,
e.g., Agreement Maker [9] and Blooms [14]. Most of them
follow a survey approach [10], or use data available on the
Internet [6]. Many methods are used to match entities to
determine an alignment, like testing, heuristics, etc. To im-
prove accuracy, many of them use third-party vocabularies
such as WordNet or Wikipedia. However, ontology merging
is simply used in our approach and we did not conduct fur-
ther research on the challenges mentioned.

IV. THE DAISI COMPONENT MODEL AND

INFRASTRUCTURE SERVICES

The DAiSI component model can best be explained with
a sketch of a DAiSI component. Figure 5 shows a DAiSI
component. The blue rectangle in the background represents
the component itself. The provided and required services are
depicted with full– and semi circles, as stated earlier. The
dependencies between these two kinds of services are de-
picted by the yellow bars. They are called component con-
figurations. At run-time, only one component configuration
can be active. Being active means that all connected, re-
quired services are present and consumed (the dependencies
could be resolved), and the provided services are being pro-
duced. To avoid conflicts the component configurations are
sorted by quality with the best component configuration

noted at the top (Conf1 in Figure 5) and the least favorable

one noted at the bottom (Conf2 in our example). The fol-
lowing paragraphs explain the DAiSI component model,
depicted in Figure 6. The component model is the core of
DAiSI and has been covered in much more detail in [2]. The
component configurations (yellow bars) are represented by

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

Conf2

comp1

Conf1

Figure 5. A DAiSI component.

the class of the same name. It is associated to a Re-

quiredServiceReferenceSet, which is called a set
to account for cardinalities in required services. The provid-

ed services are represented by the ProvidedService

class. Interface roles, represented by InterfaceRole,
allow the specification of additional constraints for the com-
patibility of interfaces that use run-time information, bound
services and the internal state of a component, and are cov-
ered in more detail in [1].

To be able to narrow the structure of a dynamic adaptive
system down, blueprints of possible system configurations

can be specified. The classes Application, Template,

RequiredTemplateInterface, and ProvidedTem-

plateInterface are the building blocks in the compo-
nent model that are used to realize application architecture

conformance. One Application contains a number of

Templates, each specifying a part of the possible applica-

tion. A Template defines (needs and offers) Re-

quiredTemplateInterfaces and ProvidedTem-

plateInterfaces which refer to DomainInterfac-

es and thus form a structure which can be filled with actual
services and components by the infrastructure. More details
about templates and application architecture conformance in
the DAiSI can be found in [2].

The DAiSI infrastructure is composed of the DAiSI
component model, a registration service, which works like a
directory for running DAiSI components, and a configura-
tion service which manages how provided– and required
services are connected to each other and what component
configurations are marked as active. The configuration ser-
vice constantly checks (either periodically, or event-driven),
if the current system configuration (active component con-
figurations, component bindings, etc.)) can be improved.
For the adaptation of syntactical incompatible services, we
added a new infrastructure service: The adapter engine. The
adapter engine keeps track of all provided and required ser-
vices in the system. Whenever a new DAiSI component
enters the system, the adapter engine analyzes its provided
services and generates adapter components (which are DAiSI
components themselves) to all syntactically incompatible,
but semantically compatible services. We will describe this
process in the following in more detail.

Figure 7 shows the structure of the adapter engine. It
computes on the basis of descriptions of services (provided
and required) and generates adapter components. The infor-
mation collector aggregates the information of provided– and
candidates for required services (e.g., methods, parameters,
and return types). The mapper component compares the ga-

Figure 6. The DAiSI component model.

thered information and computes an assignment list, which
maps the information from provided services to candidates
for required services, the provided service could satisfy. The
generator takes the assignment lists from the mapper and
spawns new DAiSI components which each could map one
provided service to a semantically compatible required ser-
vice. The adapter engine keeps track of the lifecycle of every
DAiSI component. Whenever a DAiSI component leaves the
system, the adapter engine destroys all generated adapters
and thereby removes them from the system.

Figure 8 shows the process and the involved DAiSI com-

ponents. The component comp.a enters the system and

provides the service B. The adapter engine analyzes the ser-

vice B and, together with its previously built knowledge-

base, comes to the conclusion that comp.b could use ser-

vice B, but they are syntactically incompatible. The adapter

engine can not find another candidate to use service B. Thus,
it generates only one adapter – a DAiSI component called

adapter. It requires the service B and provides service A. The

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 7. Structure of the adapter engine.

Figure 8. Adaptation process with adapter engine.

DAiSI configuration service binds comp.b to adapter and

adapter to comp.a. The dependency of comp.b could be
resolved.

V. INTERFACE DESCRIPTION OF DAISI COMPONENTS WITH

ONTOLOGIES

A machine-readable interface description that includes
the important semantical information is a key aspect of our
concept. Fortunately, making semantic information machine
readable, is a well researched and understood field of
computer science. For our system, we use a three-layer
ontology structure for the construction of the knowledge-
base. The upper layer is called UpperOntology layer. In this
layer, basic knowledge is defined. Such knowledge can be
divided in different upper ontologies. If need be, e.g., if two
dynamic adaptive system instances are being merged, the
corresponding upper ontologies can be merged. Merging
ontologies is a different research area on which we do not
focus, however the available results are sufficient for our
work.

Figure 9. Three-layer ontology structure.

Figure 9 shows the three-layer ontology structure, we
used. Every application or domain defines its own upper
ontolgy. In the application layer of the ontology, which is the
second, or middle layer, all necessary definitions can be
found that are relevant for an application. The interface layer
of the ontology is the lowest level. It represents the domain
interfaces, more precisely their names, methods, parameters
and return types. The code of the domain interfaces is
directly connected to the ontology. This structure of a three-
layer ontology has the main advantage that every part can be
developed separately. Every fragment of a layer can be
merged with other fragments using ontolgy-merging and
ontolgy-mapping.

Figure 10 shows the layout of the ontology for the
application example presented in the beginning of this paper.
We used two upmost ontologies – Upper Ontology and UML
Schema Ontolgy. All definitions and relations for the
interfaces, like methods, parameters, or return types can be
found in these two ontologies. In the application layer, the
ontology data is split by topics. Every information in any of
the ontologies can be used in any interface. Datatype classes
can also be defined directly in the upper ontology. The fol-
lowing examples show, how the Ontology is defined.

Figure 10. Data structure of the example.

A. Upper Ontology and UML Schema

Figures Figure 11 Figure 12 show graphic representations
of the ontologies Upper Ontology and UML Schema.

Figure 11. Upper ontology.

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 12. Ontology for UML-Schema.

B. Application Ontology

The ontology file for the interface layer describes all def-
initions for elements that are used in one application. Every
element in an interface, e.g., the interface name, the names of
methods, input– and output parameters, are defined as one
individual in the ontology. Relations between the elements of
different interfaces are also defined in this ontology.

1) Interface name description

Consider the interface UserManager which is defined
in the ontology of the same name. It is an individual of the

upper ontology. Its type is defined as ont:Interface,
which again is defined in the ontology for the UML-Schema.
The code-snippet in Figure 13 shows the definition of the

UserManager in OWL.

Figure 13. Example of an interface name in the application ontology.

2) Function name description
 A function name is also defined as an individual and is

of the type ont:Activity. To define the relation of the
function to the output parameters the individual

ont:hasOutParam is used. The code-snippet in Figure 14

shows the function getLastName as an example; it defines

LastName as an output.

Figure 14. Example for the description of a function name in ontology.

3) Input and Output Parameter
Input and output parameters provide important infor-

mation for the adaptation. Parameter types have to be defined
exactly like input and output parameters. The code-snippet in

Figure 15 shows the definition for FirstName.

 Figure 15. Example definition of an output parameter.

C. Java-Annotations for the Interface Description

Our prototype is implemented in Java. We use an aspect
oriented method – annotations in Java as a link between the
ontology and the actual implementation. In an interface,
every element has at least one label that links it to the ontol-

ogy. Every label has an attribute hasName to reference the
ontology. Ontology names can be found in the application
layer. Interface names, for example, need only one label:

@Interfacename. Functions have three types of labels:

@Activity, @OutputParam and @InputParameter.
The label for input or output is used only if a function has
input– or output parameters. With the help of annotations,
the definition of elements of an interface is decoupled from
the actual ontology. This measure was taken to ease the
changes of either an interface or the ontology, without the
necessity to alter both. The code-snippets in Figure 16 pre-
sent two Java interfaces as examples.

Figure 16. Two example interfaces with annotations.

VI. ALGORITHM FOR ADAPTER GENERATION

In this section we describe the basic concept of the
adapter generation in Java, the process for interface compari-
son, and the inner workings of the generated adapters. Later-
on, examples of adapter actions will be shown.

A. Basic principle of the adapter

Every adapter is a DAiSI component, connecting two dif-

ferent interfaces. Figure 17 shows comp.C as an example
adapter component. The implementation in Java translates a

function call from one (update) to another (save). The
provided service of the adapter implements the required
interface. The mapping between the required and provided
interfaces is implemented in functions of the required inter-
face.

<!-- …/ont.owl#UserManager -->

<owl:NamedIndividual

rdf:about="&ont;UserManager">

<rdf:type rdf:resource="&ont;Interface"/>

</owl:NamedIndividual>

<!-- …/ont.owl#getLastName -->

<owl:NamedIndividual

rdf:about="&ont;getLastName">

<rdf:type rdf:resource="&ont;Activity"/>

<rdf:type rdf:resource="&ont;getLastName"/>

<ont:hasOuputParam

 rdf:resource="&ont;LastName"/>
</owl:NamedIndividual>

<!-- …/ont.owl#FirstName -->

<owl:NamedIndividual rdf:about="&ont;FirstName">

 <rdf:type rdf:resource="&ont;OutputParam"/>

<rdf:type rdf:resource="&ont;FirstName"/>

</owl:NamedIndividual>

@Interfacename(hasName = "PowerQuality1")

public interface PowerQuality {

@Activity(hasName = "save")

public void save(

@Inputparam(hasName = "GridData")

GridData griddata);

}

@Interfacename(hasName = "UserInterface1")

public interface UserInterface1 {

@Activity(hasName= "getUsername")

@OutputParam(hasName= "username")

public String getUsername();

}

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

 << comp. C>>
Class Adapter implements PowerQuality{
 PowerInfo b;
 Void update(Netzdata data){
 b.save(data);
 }
}

<< comp. A>>
Class PowerQualityImpl{
ICharger charger;
}

 << comp. B>>
Class PowerInfo
implements PowerInfo{
}

Interface PowerInfo {
void save(data : Netzdata);

 }

Interface PowerQuality {
void update(data : Netzdata);

 }

Figure 17. Basic principle of the adapter between two interfaces.

B. Process for interface comparison

The information collector in the adapter engine collects
instances of the annotations in the Java interface definitions.
The mapper uses this collected information to search all
dependent instances in the ontology, which are stored in the
knowledge-base. The mapper searches for all required inter-
faces which could possibly use the provided interface. Re-
quired services can use provided services, if they are seman-
tically compatible. This path, from required interfaces to
provided interfaces is used as a mapping to create the adapter
components. Figure 18 shows schematically how the adapter
generation works.

Find instance from
annotation in all

functions in
interface at

required site

Find all dependent
instances in Upper-

Ontolgy

Find all provided
interfaces which use

dependent
instances

Create mapping

Figure 18. Process for mapping required interfaces to provided interfaces.

C. Scenario examples

1) Different names
In this case, two functions in required and provided inter-

faces offer the same functionality, but are named differently.
The ontology is used to find the relationship between two
functions. The adapter engine generates an adapter compo-
nent. The required service of the adapter component calls the
method of the provided service. Figure 19 shows a UML
activity diagram of the behavior of the generated adapter.

Figure 19. Activity diagram for the call of the update method. The call is

adapted to the save-method.

2) Different Data Structure
In the second example, the data structures of parameters

are different. For the mapping between parameters, a map-
ping scheme is searched in the ontology. The adaptation
component calls the function from the provided interface
using the found mapping for the parameters. Figure 20
shows an UML activity diagram of the behavior of the gen-
erated adapter.

Figure 20. Activity diagram for the adaptation of different data structures

3) Different Control Structure
Composition is used, if one function of a required inter-

face can be composed into two or more functions of a pro-
vided interface. In this case, the adaptation component calls
all functions whose return values can be composed to the
required data and composes their return values to match the
return value of the adapted interface. Figure 21 shows how
two functions are called to account for a difference in control
structures.

Figure 21. Activity diagram for the adaptation of different control structures

VII. CONCLUSION

In this work, we presented the newest enhancement to the
DAiSI: A new infrastructure service. The adapter engine is
prototypically implemented with Java and OWL API [3]. It
allows the binding of syntactically incompatible services
with the help of generated adapters. One of the main benefits
is a possible increase of re-use of components across differ-
ent domains. The layered structure of ontologies allows a
collaborative, distributed development.

VIII. FUTURE WORK

In further steps, we will use a distributed ontology, so
that every component can be linked directly to the ontology,
describing its structure.

57Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

REFERENCES

[1] H. Klus, D. Herrling, and A. Rausch, “Interface Roles for
Dynamic Adaptive Systems“, in Proceeding of ADAPTIVE
2015, The Seventh International conference on Adaptive and
Self-Adaptive Systems and Applications, 2015, pp. 80–84.

[2] H. Klus, A. Rausch, and D. Herrling, “Component Templates
and Service Applications Specifications to Control Dynamic
Adaptive System Configuration“, in Proceedings of
AMBIENT 2015, The Fifth International Conference on Am-
bient Computing, Applications, Services and Technologies,
Nice, France, 2015, pp. 42–51.

[3] The OWL API, https://github.com/owlcs/owlapi/wiki,
[Online], December 2015, retrieved: 02.2016.

[4] H. Klus and A. Rausch, “DAiSI–A Component Model and
Decentralized Configuration Mechanism for Dynamic
Adaptive Systems”, in Proceedings of ADAPTIVE 2014,
The Sixth International Conference on Adaptive and Self-
Adaptive Systems and Applications,Venice, Italy, 2014, pp.
595–608.

[5] C. Canal and G. Salaün, “Adaptation of Asynchronously
Communicating Software”, in Lecture Notes in Computer
Science, vol. 8831, 2014, pp. 437–444.

[6] M. K. Bergmann, “50 Ontology Mapping and Alignment
Tools”, in Adaptive Information, Adaptive Innovation,
Adaptive Infrastructure, http://www.mkbergman.com/1769/
50-ontology-mapping-and-alignment-tools/, July 2014,
[Online], retrieved: 02.2016.

[7] H. Klus, “Anwendungsarchitektur-konforme Konfiguration
selbstorganisierender Softwaresysteme”, (Application arch-
itecture conform configuration of self-organizing software-
systems), Clausthal-Zellerfeld, Technische Universität
Clausthal, Department of Informatics, Dissertation, 2013.

[8] A. Bennaceur, C. Chilton, M. Isberner, and B. Jonsson,
“Automated Mediator Synthesis: Combining Behavioural
and Ontological Reasoning”, Software Engineering and
Formal Methods, SEFM – 11th International Conference on
Software Engineering and Formal Methods, 2013, Madrid,
Spain, pp. 274–288.

[9] D. Faria, C. Pesquita, E. Santos, M. Palmonari, F. Cruz, and
M. F. Couto, The AgreementMakerLight ontology matching
system, in On the Move to Meaningful Internet Systems:
OTM 2013 Conferences, Springer Berlin Heidelberg, pp.
527–541.

[10] P. Shvaiko and J. Euzenat, “Ontology matching: state of the
art and future challenges”, IEEE Transactions on Knowledge
and Data Engineering, vol. 25(1), 2013, pp. 158–176.

[11] OMG, “CORBA Middleware Specifications”, Version 3.3,
Object Management Group Std., November 2012,
http://www.omg.org/spec/#MW, [Online], retrieved:
02.2016.

[12] G. Söldner “Semantische Adaption von Komponenten”,
(semantic adaption of components), Dissertation, Friedrich-
Alexander-Universität Erlangen-Nürberg, 2012.

[13] OMG, OMG Unified Modeling Language (OMG UML)
Superstructure, Version 2.4.1, Object Management Group
Std., August 2011, http://www.omg.org/spec/UML/2.4.1,
[Online], retrieved: 06.2015.

[14] P. Jain, P. Z. Yeh, K. Verma, R. G. Vasquez, M. Damova, P.
Hitzler, and A. P. Sheth, “Contextual ontology alignment of
lod with an upper ontology: A case study with proton”, in
The Semantic Web: Research and Applications, Springer
Berlin Heidelberg, 2011, pp. 80–92.

[15] D. Niebuhr, “Dependable Dynamic Adaptive Systems:
Approach, Model, and Infrastructure”, Clausthal-Zellerfeld,
Technische Universität Clausthal, Department of
Informatics, Dissertation, 2010.

[16] J. Camara, J. Martin, G. Saaün, C. Canal, and E. Pimentel,
“Semi-Automatic Specification of Behavioural Service
Adaptation Contracts”, in Proceedings of the 7th
International Workshop on Formal Engineering Approaches
to Software Components and Architectures, 2010, pp. 19–34.

[17] D. Niebuhr and A. Rausch, “Guaranteeing Correctness of
Component Bindings in Dynamic Adaptive Systems based
on Run-time Testing”, in Proceedings of the 4th Workshop
on Services Integration in Pervasive Environments (SIPE 09)
at the International Conference on Pervasive Services 2009,
(ICSP 2009), 2009, pp. 7–12.

[18] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli,
“Automatic Synthesis of Behavior Protocols for Composable
Web-Services”, Proceedings of the the 7th Joint Meeting of
the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of
Software Engineering, 2009, pp. 141–150.

[19] J. Camara, C. Canal, J. Cubo, and J. Murillo, “An Aspect-
Oriented Adaptation Framework for Dynamic Component
Evolution“, Electronic Notes in Theoretical Computer
Science, vol. 189, 2007, pp. 21–34.

[20] H. R. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F.
Casti, “Semi-Automated Adaptation of Service Interactions“,
Proceedings of the 16th international Conference on World
Wide Web, 2007, pp. 993–1002.

[21] A. Kalyanpur, D. Jimenez, S. Battle, and J. Padget,
“Automatic Mapping of OWL Ontologies into Java”, in F.
Maurer and G. Ruhe, Proceedings of the 17th International
Conference on Software Engineering and Knowledge
Engineering, SEKE’2004, 2004, pp. 98–103.

[22] D. M. Yellin and R. E. Strom, “Protocol Specifications and
Component Adaptors”, ACM Transactions on Programming
Languages and Systems, vol. 19, 1997, pp. 292–333.

58Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

https://scholar.google.de/citations?user=k3bLaFAAAAAJ&hl=de&oi=sra

