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Abstract—Dynamic adaptive systems are systems that change 

their behavior at runtime. Behavioral changes can be caused 

by user’s needs, or based on context information if the system 

environment changes. The Dynamic Adaptive System Infra-

structure (DAiSI) has been developed as a platform for such 

systems. It is a run-time infrastructure that operates on com-

ponents that comply to a DAiSI-specific component model. 

DAiSI-based systems are “open” by design. The run-time 

infrastructure can integrate components into the system that 

were not known at design-time. To control the system configu-

ration of such an open and self-organizing system, a configura-

tion service has been developed that can make use of applica-

tion blueprints to ensure application architecture conform-

ance. Components in a DAiSI system communicate with each 

other through services. Services are described by domain inter-

faces, which have to be specified by the component developer. 

Components can utilize services, provided by other compo-

nents as long as the respective required and provided interfac-

es are compatible. However, sometimes services seem to be 

doing the same thing, e.g., provide the same data or operations, 

but differ on a syntactical level. Therefore, in this article, we 

present an approach which enables the use of syntactically 

incompatible services. We developed an ontology-based meth-

od for the generation of an adapter that connects services, 

which provide the right data in the wrong format. In this pa-

per we present a method to describe interfaces of components 

and an algorithm to automatically generate adapters between 

them. 

Keywords—component models; self-adaptation; dynamic 

adaptive systems; ontology. 

I. INTRODUCTION 

An increasing interest in dynamic adaptive systems could 
be observed in the last two decades. A platform for such 
systems has been developed in our research group for more 
than ten years. It is called Dynamic Adaptive System Infra-
structure (DAiSI). DAiSI is a component based platform that 
can be used in self-managed systems. Components can be 
integrated into or removed from a dynamic adaptive system 
at run-time without causing a complete application to fail. To 
meet this requirement, each component can react to changes 
in its environment and adapt its behavior accordingly. 

Components are developed with a specific use-case in 
mind. Thus, the domain interfaces describing the provided 
and required services tend to be tailored to a very specific 

application. This effect limits the re-use of existing compo-
nents in new applications. One measure to minimize re-
developing existing components is to increase reusability. 
The reuse of existing components is one key aspect in soft-
ware engineering. However, re-using components in other 
application contexts than they have been originally devel-
oped for is still a big challenge. This challenge gets even 
bigger, if such components should be integrated into dynam-
ic adaptive systems at run-time. 

A valid approach to tackle this challenge is adaptation. 
Because of the dynamic adaptive nature of DAiSI applica-
tions, DAiSI components are considered as black boxes. 
Their capabilities and behavior are specified by interfaces 
that describe required– and provided services. In this ap-
proach, we suggest a solution to couple provided and re-
quired services that are syntactically incompatible. On a 
semantical level, the provided service does offer the needed 
data or operations. To be able to utilize a specific provided 
service, we suggest to construct an adapter that enables in-
teroperability between services that are only compatible on 
some semantical level.  

The goal of an adapter is to enable communication be-
tween two formerly incompatible components. In order to 
translate different representations of data, a common 
knowledge-base is needed. In this work we use a central 
ontology as the common knowledge-base. To illustrate that 
this approach is suitable for adaptive systems, we extend our 
DAiSI infrastructure by an ontology-based adapter engine 
for service adaptation. To strengthen the dynamic adaptive 
nature of the DAiSI, we generate these adapters at run-time. 
We argue that these adapters cannot be generated at compile 
time, as the different components that should interact with 
each other are not known at compile time, but only at inte-
gration time, which is the same as run-time in dynamic adap-
tive systems.  

The rest of this paper is structured as follows: In Section 
II, we describe the already sketched problem in more detail. 
Section III gives an overview of relevant related work. In 
Section IV, we give a short overview of the DAiSI compo-
nent model and a few hints for further reading. Section V 
explains, how the adaptation of services with the help of an 
ontology works. In Section VI, the algorithm for the adapter 
generation is shown in more detail, before the paper is 
wrapped up by a short conclusion in Section VII. 
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II. PROBLEM DESCRIPTION  

Whenever a dynamic adaptive application is developed, 
the interfaces between the components are specified at an 
early stage. They are very domain specific and their defini-
tion is driven by the use cases of the future application in 
mind. On the other hand, many applications run in a shared 
context with other applications from different domains. 

Harmonizing one large interface pool among different 
developers from different vendors that operate in different 
domains is a tedious task, which often results in a slow 
standardization process. This slows the development process 
down and, especially in dynamic adaptive systems, dimin-
ishes the chances for the development of new applications. 
Developers will in those cases often start their own interface 
pool. This, on the other hand, reduces the chances to re-use 
existing components from other domains.  

Additionally, the management of one central interface 
pool in a distributed system does not scale well. One way to 
mitigate this issue would be a de-centralization. To tackle 
these challenges, we propose to keep the domain interfaces 
un-harmonized. To be able to use a service across domains, 
we propose to adapt syntactically incompatible services by 
on-the-fly generated adapters. To be able to do so, we require 
every interface pool to use an ontology. By either merging 
these ontologies later on, or by using distributed ontologies 
we ensure that interfaces from different interface pools share 
a common semantic. 

Components offer provided services. To be able to do so, 
they may require others and thus, specify required services. 
Provided and required services stand in relation to each oth-
er, mapping which required services are necessary to pro-
duce which provided services. In the graphical notation for 
DAiSI components provided services are marked as filled 
circles, required services are noted as semi-circles (similar to 
the UML lollipop notation [13]) and the relation between 
those two are marked as bars across the component, linking 
provided and required services (cf. Figure 1). 

 

Domain

<<interface>>
RequiredService

<<interface>>
ProvidedService

Component development

config 1

config 2

config 1

 

Figure 1. DAiSI components and domain-specific interface definitions. 

We propose that services that are semantically compati-
ble, but lack compatibility on a syntactical level, should be 
usable. We suggest to generate adapters between the differ-
ent services and define three different adaptation scenarios to 

face the following three types of incompatibility: Different 
Naming, Different Data Structure, and Different Control 
Structure. We believe that we can connect all semantically 
compatible but syntactically different services using these 
three types of adapters. 

A. Different Naming 

By “Different Naming” we denote cases in which the 
names of interfaces describing services or names of functions 
do not match. While they are syntactically different, their 
names share the same semantics and could be used synony-
mous. The first example, depicted in Figure 2, shows two 

interfaces: PowerInfo and PowerQuality. They are 
named differently, but offer the same functionality. Each of 

them defines one of the following methods: update, and 

save respectively. The names of their parameters are identi-
cal and so are the return types. 

 

 

 

Figure 2. Example of two interfaces with Different Naming. 

B. Different Data Structure 

In this type of conflict, the names of the interfaces and 
their functions are the same. However, the parameters differ 
in their data types. The encapsulated data however is similar 
and the data structures can be mapped to each other. In Fig-
ure 3 in the Different Data Structure example an interface 

PowerQuality1 is depicted. It contains a function 

saveGridInfo which processes a parameter of the type 

GridData. In the interface PowerInfo1, there are two 
other functions with the same name but with two different 
input parameters.  

 

 

 

Figure 3. Example of two interfaces with a Different Data Structure. 

C. Different Control Structure  

In this case, the functions of two different interfaces can 
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not be mapped directly to each other. To obtain valid results, 
the control structure has to be modified. In the example in 

Figure 4, two interfaces UserInterface and UserMan-

ager are given. By definition a username should be com-
posed of the first– and the last name of a person. As such, the 

two functions getFirstName and getLastName from 

the UserManager interface in comparison provide the 

same information as getUsername from the UserIn-

terface interface. 
 

 

 

Figure 4. Example of two interface requiring Different Control Structures. 

To enable the mapping between interfaces, a common 
knowledge-base is needed. Because of the issues stated earli-
er, it should not be mandatory that both sets of interface 
definitions are of the same domain. A common knowledge-
base defined by ontologies can be generated using merging 
or other integration mechanisms on classical ontology lan-
guages or by using a distributed ontology language. Both 
interfaces do not need to contain information on how to 
interpret the data of each other. That means that interfaces 
can be developed independently, without knowing anything 
about a possible re-use in another system. 

III. RELATED WORK 

A dynamic adaptive system is a system that adjusts its 
structure and behavior according to the user’s needs or to a 
change in its system context at run-time. The DAiSI is one 
example of an infrastructure for dynamic adaptive systems 
[4][7][15][17]. It has been developed over more than a dec-
ade by a number of researchers. This work is based on DAi-
SI and extends the current run-time infrastructure.  

According to a publication of M. Yellin and R. Storm, 
challenges regarding behavioral differences of components 
have been tackled by many researchers [22]. The behavior of 
the interface of a component can be described by a protocol 
with the help of state-machines. The states of two involved 
components are stored and managed by an adapter. In further 
steps of this method, an ontology is used as a language li-
brary to describe a component’s behavior. To automate the 
adaptation of services, a semi-automated method has been 
developed to generate adapters with the analysis of a possi-
ble behavioral mismatch [5][20].  

Another solution for the connection of semantically in-
compatible services is presented in [5]. They used buffers for 
the asynchronous communication between services and 
translated the contents of those buffers to match the syntacti-
cal representations of the involved services. The behavioral 
protocols of services can automatically be generated with a 
tool that is based on synthesis– and testing techniques [18]. 
Ontologies are used in their method to describe the behavior 

of components and to create a tool for automated adaptation 
[8]. However, some components require a very complex 
state-machine; the development of which can easily become 
very expensive. Thus, in this work, we present another way 
that does not rely on the consideration of dependencies with-
in the behavior or the involved interfaces. 

The method of transformation of an ontology into inter-
faces is already integrated into Corba Ontolingua [11]. With 
this tool an ontology can be transformed into the interface 
definition language (IDL). A. Kalyanpur [21] has developed 
a method which allows automatic mapping from Web On-
totolgy Language (OWL) to Java. The Object Management 
Group (OMG) [13] has defined how to transform the Unified 
Markup Language (UML) into an ontology. With their 
method, UML classes are first converted into a helper class 
and then transformed into an ontology [19]. G. Söldner [12] 
has shown how to transform the UML itself into an ontology. 
A downside of the above methods: The interface and the 
ontology have a strong relation. If a developer changes the 
ontology, all interfaces which are linked to this ontology 
have to be modified. In this work, we decoupled this strong 
relation. Alternating a part of the ontology now only affects 
the interfaces directly linked to it. 

Matching and merging existing ontologies is still a big 
challenge regarding its speed and accuracy. To simplify this, 
many application interfaces (APIs) have been developed, 
e.g., Agreement Maker [9] and Blooms [14]. Most of them 
follow a survey approach [10], or use data available on the 
Internet [6]. Many methods are used to match entities to 
determine an alignment, like testing, heuristics, etc. To im-
prove accuracy, many of them use third-party vocabularies 
such as WordNet or Wikipedia. However, ontology merging 
is simply used in our approach and we did not conduct fur-
ther research on the challenges mentioned. 

IV. THE DAISI COMPONENT MODEL AND 

INFRASTRUCTURE SERVICES 

The DAiSI component model can best be explained with 
a sketch of a DAiSI component. Figure 5 shows a DAiSI 
component. The blue rectangle in the background represents 
the component itself. The provided and required services are 
depicted with full– and semi circles, as stated earlier. The 
dependencies between these two kinds of services are de-
picted by the yellow bars. They are called component con-
figurations. At run-time, only one component configuration 
can be active. Being active means that all connected, re-
quired services are present and consumed (the dependencies 
could be resolved), and the provided services are being pro-
duced. To avoid conflicts the component configurations are 
sorted by quality with the best component configuration 

noted at the top (Conf1 in Figure 5) and the least favorable 

one noted at the bottom (Conf2 in our example). The fol-
lowing paragraphs explain the DAiSI component model, 
depicted in Figure 6. The component model is the core of 
DAiSI and has been covered in much more detail in [2]. The 
component configurations (yellow bars) are represented by 
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Conf2

comp1

Conf1

 

Figure 5. A DAiSI component. 

the class of the same name. It is associated to a Re-

quiredServiceReferenceSet, which is called a set 
to account for cardinalities in required services. The provid-

ed services are represented by the ProvidedService 

class. Interface roles, represented by InterfaceRole, 
allow the specification of additional constraints for the com-
patibility of interfaces that use run-time information, bound 
services and the internal state of a component, and are cov-
ered in more detail in [1].  

To be able to narrow the structure of a dynamic adaptive 
system down, blueprints of possible system configurations 

can be specified. The classes Application, Template, 

RequiredTemplateInterface, and ProvidedTem-

plateInterface are the building blocks in the compo-
nent model that are used to realize application architecture 

conformance. One Application contains a number of 

Templates, each specifying a part of the possible applica-

tion. A Template defines (needs and offers) Re-

quiredTemplateInterfaces and ProvidedTem-

plateInterfaces which refer to DomainInterfac-

es and thus form a structure which can be filled with actual 
services and components by the infrastructure. More details 
about templates and application architecture conformance in 
the DAiSI can be found in [2]. 

The DAiSI infrastructure is composed of the DAiSI 
component model, a registration service, which works like a 
directory for running DAiSI components, and a configura-
tion service which manages how provided– and required 
services are connected to each other and what component 
configurations are marked as active. The configuration ser-
vice constantly checks (either periodically, or event-driven), 
if the current system configuration (active component con-
figurations, component bindings, etc.)) can be improved. 
For the adaptation of syntactical incompatible services, we 
added a new infrastructure service: The adapter engine. The 
adapter engine keeps track of all provided and required ser-
vices in the system. Whenever a new DAiSI component 
enters the system, the adapter engine analyzes its provided 
services and generates adapter components (which are DAiSI 
components themselves) to all syntactically incompatible, 
but semantically compatible services. We will describe this 
process in the following in more detail.  

Figure 7 shows the structure of the adapter engine. It 
computes on the basis of descriptions of services (provided 
and required) and generates adapter components. The infor-
mation collector aggregates the information of provided– and 
candidates for required services (e.g., methods, parameters, 
and return types). The mapper component compares the ga- 

 

Figure 6. The DAiSI component model. 

thered information and computes an assignment list, which 
maps the information from provided services to candidates 
for required services, the provided service could satisfy. The 
generator takes the assignment lists from the mapper and 
spawns new DAiSI components which each could map one 
provided service to a semantically compatible required ser-
vice. The adapter engine keeps track of the lifecycle of every 
DAiSI component. Whenever a DAiSI component leaves the 
system, the adapter engine destroys all generated adapters 
and thereby removes them from the system. 

Figure 8 shows the process and the involved DAiSI com-

ponents. The component comp.a enters the system and 

provides the service B. The adapter engine analyzes the ser-

vice B and, together with its previously built knowledge-

base, comes to the conclusion that comp.b could use ser-

vice B, but they are syntactically incompatible. The adapter 

engine can not find another candidate to use service B. Thus, 
it generates only one adapter – a DAiSI component called 

adapter. It requires the service B and provides service A. The  
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Figure 7. Structure of the adapter engine. 

 

Figure 8. Adaptation process with adapter engine. 

DAiSI configuration service binds comp.b to adapter and 

adapter to comp.a. The dependency of comp.b could be 
resolved. 

V. INTERFACE DESCRIPTION OF DAISI COMPONENTS WITH 

ONTOLOGIES 

A machine-readable interface description that includes 
the important semantical information is a key aspect of our 
concept. Fortunately, making semantic information machine 
readable, is a well researched and understood field of 
computer science. For our system, we use a three-layer 
ontology structure for the construction of the knowledge-
base. The upper layer is called UpperOntology layer. In this 
layer, basic knowledge is defined. Such knowledge can be 
divided in different upper ontologies. If need be, e.g., if two 
dynamic adaptive system instances are being merged, the 
corresponding upper ontologies can be merged. Merging 
ontologies is a different research area on which we do not 
focus, however the available results are sufficient for our 
work. 

 

Figure 9. Three-layer ontology structure. 

Figure 9 shows the three-layer ontology structure, we 
used. Every application or domain defines its own upper 
ontolgy. In the application layer of the ontology, which is the 
second, or middle layer, all necessary definitions can be 
found that are relevant for an application. The interface layer 
of the ontology is the lowest level. It represents the domain 
interfaces, more precisely their names, methods, parameters 
and return types. The code of the domain interfaces is 
directly connected to the ontology. This structure of a three-
layer ontology has the main advantage that every part can be 
developed separately. Every fragment of a layer can be 
merged with other fragments using ontolgy-merging and 
ontolgy-mapping. 

Figure 10 shows the layout of the ontology for the 
application example presented in the beginning of this paper. 
We used two upmost ontologies – Upper Ontology and UML 
Schema Ontolgy. All definitions and relations for the 
interfaces, like methods, parameters, or return types can be 
found in these two ontologies. In the application layer, the 
ontology data is split by topics. Every information in any of 
the ontologies can be used in any interface. Datatype classes 
can also be defined directly in the upper ontology. The fol-
lowing examples show, how the Ontology is defined. 

 

 

Figure 10. Data structure of the example. 

 

A. Upper Ontology and UML Schema 

Figures Figure 11 Figure 12 show graphic representations 
of the ontologies Upper Ontology and UML Schema. 

 

 

Figure 11. Upper ontology. 
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Figure 12. Ontology for UML-Schema. 

B. Application Ontology  

The ontology file for the interface layer describes all def-
initions for elements that are used in one application. Every 
element in an interface, e.g., the interface name, the names of 
methods, input– and output parameters, are defined as one 
individual in the ontology. Relations between the elements of 
different interfaces are also defined in this ontology. 

1) Interface name description 

Consider the interface UserManager which is defined 
in the ontology of the same name. It is an individual of the 

upper ontology. Its type is defined as ont:Interface, 
which again is defined in the ontology for the UML-Schema. 
The code-snippet in Figure 13 shows the definition of the 

UserManager in OWL. 
 

 

Figure 13. Example of an interface name in the application ontology. 

2) Function name description 
 A function name is also defined as an individual and is 

of the type ont:Activity. To define the relation of the 
function to the output parameters the individual 

ont:hasOutParam is used. The code-snippet in Figure 14 

shows the function getLastName as an example; it defines 

LastName as an output. 
 

 

Figure 14. Example for the description of a function name in ontology. 

3) Input and Output Parameter 
Input and output parameters provide important infor-

mation for the adaptation. Parameter types have to be defined 
exactly like input and output parameters. The code-snippet in 

Figure 15 shows the definition for FirstName. 
 

 

 Figure 15. Example definition of an output parameter. 

C. Java-Annotations for the Interface Description 

Our prototype is implemented in Java. We use an aspect 
oriented method – annotations in Java as a link between the 
ontology and the actual implementation. In an interface, 
every element has at least one label that links it to the ontol-

ogy. Every label has an attribute hasName to reference the 
ontology. Ontology names can be found in the application 
layer. Interface names, for example, need only one label: 

@Interfacename. Functions have three types of labels: 

@Activity, @OutputParam and @InputParameter. 
The label for input or output is used only if a function has 
input– or output parameters. With the help of annotations, 
the definition of elements of an interface is decoupled from 
the actual ontology. This measure was taken to ease the 
changes of either an interface or the ontology, without the 
necessity to alter both. The code-snippets in Figure 16 pre-
sent two Java interfaces as examples.  

 

 
 

 

Figure 16. Two example interfaces with annotations. 

VI. ALGORITHM FOR ADAPTER GENERATION 

In this section we describe the basic concept of the 
adapter generation in Java, the process for interface compari-
son, and the inner workings of the generated adapters. Later-
on, examples of adapter actions will be shown. 

A. Basic principle of the adapter 

Every adapter is a DAiSI component, connecting two dif-

ferent interfaces. Figure 17 shows comp.C as an example 
adapter component. The implementation in Java translates a 

function call from one (update) to another (save). The 
provided service of the adapter implements the required 
interface. The mapping between the required and provided 
interfaces is implemented in functions of the required inter-
face. 
 

<!-- …/ont.owl#UserManager --> 

 

<owl:NamedIndividual  

rdf:about="&ont;UserManager"> 

<rdf:type rdf:resource="&ont;Interface"/> 

</owl:NamedIndividual> 

<!-- …/ont.owl#getLastName --> 

 

<owl:NamedIndividual 

rdf:about="&ont;getLastName"> 

<rdf:type rdf:resource="&ont;Activity"/> 

<rdf:type rdf:resource="&ont;getLastName"/> 

<ont:hasOuputParam  

 rdf:resource="&ont;LastName"/> 
</owl:NamedIndividual> 

<!-- …/ont.owl#FirstName --> 

 

<owl:NamedIndividual rdf:about="&ont;FirstName">

 <rdf:type rdf:resource="&ont;OutputParam"/> 

<rdf:type rdf:resource="&ont;FirstName"/> 

</owl:NamedIndividual> 

@Interfacename(hasName = "PowerQuality1") 

public interface PowerQuality { 

@Activity(hasName = "save") 

public void save(  

@Inputparam(hasName = "GridData")  

GridData griddata); 

} 

@Interfacename(hasName = "UserInterface1") 

public interface UserInterface1 { 

@Activity(hasName= "getUsername") 

@OutputParam(hasName= "username") 

public String getUsername(); 

} 
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           << comp. C>>
Class Adapter implements PowerQuality{
   PowerInfo b;
   Void  update(Netzdata data){
         b.save(data);
   }
}

<< comp. A>>
Class PowerQualityImpl{
ICharger  charger;
}

           << comp. B>>
Class PowerInfo 
implements PowerInfo{
}

Interface PowerInfo { 
void save( data : Netzdata);

 }

Interface PowerQuality { 
void update(data : Netzdata);

 }

 

Figure 17. Basic principle of the adapter between two interfaces. 

B. Process for interface comparison 

The information collector in the adapter engine collects 
instances of the annotations in the Java interface definitions. 
The mapper uses this collected information to search all 
dependent instances in the ontology, which are stored in the 
knowledge-base. The mapper searches for all required inter-
faces which could possibly use the provided interface. Re-
quired services can use provided services, if they are seman-
tically compatible. This path, from required interfaces to 
provided interfaces is used as a mapping to create the adapter 
components. Figure 18 shows schematically how the adapter 
generation works. 

 

Find instance from 
annotation in all 

functions in 
interface at 

required site 

Find all dependent 
instances in Upper-

Ontolgy

Find all provided 
interfaces which use 

dependent 
instances

Create mapping

 

Figure 18. Process for mapping required interfaces to provided interfaces. 

C.  Scenario examples  

1) Different names 
In this case, two functions in required and provided inter-

faces offer the same functionality, but are named differently. 
The ontology is used to find the relationship between two 
functions. The adapter engine generates an adapter compo-
nent. The required service of the adapter component calls the 
method of the provided service. Figure 19 shows a UML 
activity diagram of the behavior of the generated adapter. 

 

 

Figure 19. Activity diagram for the call of the update method. The call is 

adapted to the save-method. 

2) Different Data Structure 
In the second example, the data structures of parameters 

are different. For the mapping between parameters, a map-
ping scheme is searched in the ontology. The adaptation 
component calls the function from the provided interface 
using the found mapping for the parameters. Figure 20 
shows an UML activity diagram of the behavior of the gen-
erated adapter. 

 

Figure 20. Activity diagram for the adaptation of different data structures  

3) Different Control Structure 
Composition is used, if one function of a required inter-

face can be composed into two or more functions of a pro-
vided interface. In this case, the adaptation component calls 
all functions whose return values can be composed to the 
required data and composes their return values to match the 
return value of the adapted interface. Figure 21 shows how 
two functions are called to account for a difference in control 
structures. 

 

Figure 21. Activity diagram for the adaptation of different control structures 

VII. CONCLUSION 

In this work, we presented the newest enhancement to the 
DAiSI: A new infrastructure service. The adapter engine is 
prototypically implemented with Java and OWL API [3]. It 
allows the binding of syntactically incompatible services 
with the help of generated adapters. One of the main benefits 
is a possible increase of re-use of components across differ-
ent domains. The layered structure of ontologies allows a 
collaborative, distributed development.  

 

VIII. FUTURE WORK 

In further steps, we will use a distributed ontology, so 
that every component can be linked directly to the ontology, 
describing its structure. 
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