
The Challenge of Transforming State in the Adaptation Objects

Dominic Seiffert

University of Mannheim
Mannheim, Germany

Email: seiffert@informatik.uni-mannheim.de

Abstract—When a provided interface and an expected interface
need to be connected with each other, this connection is sometimes
hindered by signature mismatches. In the world of object-oriented
programming where objects play a key role, one important
signature mismatch problem occurs when the expected interface
expects an object data type that is per se incompatible, although
semantically equal, to the object data type delivered by the
provided interface. For example, suppose a birthday calendar
is the parameter type expected by the expected interface, but
another birthday calendar from another developer is the provided
parameter type, then a mismatch on object data type occurs.
To solve this problem, adaptation is one potential solution.
However, because some programming language constructs are not
amenable to adaptation, a mechanism based on transformation
can be used instead to complement the adaptation process. The
challenge is to retrieve the state of the object instance delivered by
the provided interface, and to set it to an instance of the object
type by the expected interface. In the literature, this problem,
however, has been not tackled so far by the object-oriented
community. This position paper aims to highlight this challenge
and motivate the development of future adaptation tools to solve
this problem fully automatically. The challenge is illustrated by
typical transformation examples, ranging from more or less trivial
to quite challenging tasks.

Keywords–Signature Mismatches; Object Adaptation; State
Transformation

I. INTRODUCTION

Software building blocks [1] can be connected by their
provided and expected interfaces in order to create function-
ality. Unfortunately, direct connection is not always possible
because of signature mismatches. A very simple example of
a signature mismatch occurs when the provided interface and
the interface to connect have different names although they
actually provide the same functionality. This problem arises
when the vocabulary in the problem domain is different from
the vocabulary in the solution domain [2]. Another signature
mismatch problem occurs in the object-oriented world where
not only primitive data types can be used as parameters and
return types but also object types. An important feature of
an object is that it holds a state. When an object is defined
as a parameter type or return type for a provided interface
but the expected interface supports an object type which is
per se incompatible, although semantically equal, a solution
is required to solve this mismatch. Adaptation provides such
a solution because it overcomes signature mismatches [3].
Several approaches have been proposed in the world of object-
oriented programming to tackle this problem of signature
mismatches such as [4] [5]. However, the problem of matching
objects that hold state has not been considered. It is a crucial

problem, however, because objects play an important role
in object-oriented development. Therefore, it is important to
highlight this challenge in order to improve adaptation in the
object-oriented world.

The remainder of this paper is structured as follows:
Section 2 provides background information on adaptation,
especially in the object-oriented world. Section 3 delivers a
motivational example to show that this problem is not just an
academic one. Section 4 provides an overview of the different
problems in more detail. Section 5 provides a conclusion and
an outlook on future work.

II. BACKGROUND

In the early 90’s Rittri [6], Runciman and Toyn [7] and
Cosmo [8] proposed an approach for tackling the problem of
retrieving functionality by matching types, laying the basis for
the problem of type isomorphism. Two types A and B are
definably isomorphic (A ∼=d B) iff there exist functions (λ-
terms) M:A → B and N:B → A such that M ◦ N = IB and N
◦ M = IA, where IA and IB are λx : A.x and λx : B.x, the
identities of type A and B. The terms are called invertible.

A minor formal explanation is presented in [8] on page 38,
which states that any two types A and B are equivalent if we
can write two simple transformations h:A→ B and h−1 : B →
A such that

1) for any function f:A, h(f) : B and h−1(h(f)) = f
2) for any function g:B, h−1(g) : A and h(h−1(g)) = g.

The main subject of interest are the transformation func-
tions h and h−1, which are written manually by the developers
[8][page 38]. Existing approaches, however, have focused on
the area of functional languages where objects do not play
a key role. Object were first introduced by object-oriented
programming [9]. In this context, Pierce defines in [10] on the
pages 225 - 228, an object as a data structure that encapsulates
some internal state and offers methods to access this state.
The internal state is thereby represented by mutable fields that
are shared among the methods and are inaccessible from the
outside. The latter is a feature named encapsulation, i.e., the
internal fields should only be accessed from the outside by
methods, as first promoted by Parnas [11], by the principle
of information hiding. As stated by Cosmo [8] on page 213,
in the presence of state, former results on type isomorphism
are no longer guaranteed to be complete. Therefore, it is
important to tackle this problem in the object-oriented world
by adapting superficially incompatible object data types that
are equal from the semantic viewpoint to match one another.

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

The main challenge herein is to retrieve the state from an
instance delivered by a provided interface and to set this state
to an instance of an object type that can then be delivered
to an expected interface. This mechanism will be named
transformation in the following.

Definition 1: Let newInstance be an instance of type New
that is delivered by a provided interface as a parameter type.
Let oldInstance be an instance of a type Old that is the param-
eter type by the expected interface. Let Old and New be per
se incompatible, i.e., no instance newInstance can be delivered
when an instance of Old is expected. A transformation is then
needed to get the state from the newInstance, create a new
oldInstance and set the state of oldInstance appropriately. A
transformation is valid when the oldInstance is actually what
the expected interface expects.

It is important to raise awareness of this problem because
automated adaptation in the object-oriented world requires
this functionality. For example, one of the most interesting
approaches for adaptation in the object-oriented world is based
on the idea proposed by Hummel and Aktinson in 2004
[12] to use test cases to find candidates using a component
search engine. In the test case, which is a simple unit test
case, the client specifies the expected semantics, i.e., the
expected interface with provided input and expected output
parameters. The test case is used then during the search process
by a component search engine in order to validate potential
candidates against the semantics specified in the test case.
This approach is known as test-driven reuse [4]. During the
search, adaptation may become necessary, however, because
candidates not necessarily fulfill the expected interface, i.e.,
signature mismatches may make it impossible to match the
expected interface to a provided interface. The implemented
adaptation engine tries to overcome signature mismatches
using brute-force parameter permutation and so called relaxed
signature matching on primitive data types (i.e., when an int
is provided and a long is expected, the parameter types are
regarded as a valid match [13]). Unfortunately, the approach
does not consider the matching of object data types, which is a
crucial requirement in object-oriented programming languages.
The same applies for other approaches from the same field,
proposed by Lemos et al. [14], named Sourcerer, and the search
engine S6 proposed by Reiss [15]. The approach proposed by
Kell [5] uses mapping rules in order to tackle the problem
of object data type matching. This, however, is a cognitive
overhead for a developer, especially when the details of the
candidate to adapt are not really known. Seiffert and Hummel
tackled the problem of matching well known data structures,
such as linked lists, stacks and arrays on each other, by pro-
viding automated transformation mechanisms [16]. However,
these are pre-defined mechanisms and not generally applicable
on object types which are unknown beforehand.

As this brief overview reveals, there is currently no existing
approach in the object-oriented world that tackles the problem
of matching object-data types fully automatically. This will be
further motivated in the next section.

III. MOTIVATION

Suppose a client wishes to use a BirthdayCalendar, where
it is possible to set and retrieve birthdays for persons as
shown by Figure 1. The classes Person and Date are assumed

BirthdayCalendar

-dateMap : Map<Person, Date>

+setBirthday(Date, Person): void
+getBirthday(Person): Date

Date

-month: String
-year : int
-day : int

+setMonth(String): void
+setYear(int): void
+setDay(int):void
+getMonth():String
+getYear():int
+getDay():int

Person

-name: String
-surname : String
-address : String

+setName(String): void
+setSurname(String): void
+setAddress(String) : void
+getName():String
+getSurname():String
+getAddress():String

Figure 1. An expected BirthdayCalendar

be already fully implemented and available in the develop-
ment project. The missing component is the BirthdayCalendar
which supports the storing and retrieving of birthdays using
the setBirthday and getBirthday methods. In other words,
implementations of these methods are still missing. Although
this is trivial it provides a simple example to explain the main
problem.

Suppose GeburtstagsKalender is semantically equivalent to
BirthdayCalendar (in fact, it is simply an implementation from
another vendor for German speaking people). Figure 2 shows
the corresponding class diagram. The type “Person” used by
the GeburtstagsKalender has the same type name as the type
Person expected by the BirthdayCalendar. The reason, in this
case, is simply that both words have the same meaning in
English and German. The types Person are semantically equiv-
alent, i.e., a Person used by the BirthdayCalendar is described
by its “name”, “surname” and its “address”. Correspondingly
the type Person used by the GeburtstagsKalender is described
by the German terms “name”, “nachname” and “adresse”.
Neither of the types are connected by a type hierarchy. This
is important, because according to the Liskov Substitution
Prinicple [17] a subclass can be delivered in any situation
where a parent class is expected. The construct final prohibits
the creation of such a subclass relationship however. This also
applies for Datum that is semantically equivalent to Date.

The GeburtstagsKalender would be useful because it pro-
vides the missing implementation, namely to store birthdays
for persons and to retrieve them by the setBirthday and
getBirthday methods. However, since Person and Datum do not
match the expected types Person and Date this is not possible.

In order to let the client use GeburtstagsKalender to
retrieve the expected functionality for storing and retrieving
birthdates, the client relies on the well-known object adapter
pattern proposed by the “Gang of Four” [18] as illustrated
by Figure 3. The idea of this pattern is simple: an adapter
implements the expected interface by the client and adapts

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

GeburtstagsKalender

-datumMap : Map<Person, Datum>

+setGeburtstag(Datum, Person): void
+getGeburtstag(Person): Datum

final Person

-name: String
-nachname : String
-adresse : String

+setName(String): void
+setNachname(String): void
+setAdresse(String) : void
+getName():String
+getNachname():String
+getAdresse():String

final Datum

-monat: String
-jahr : int
-tag : int

+setMonat(String): void
+setJahr(int): void
+setTag(int):void
+getMonat():String
+getJahr():int
+getTag():int

Figure 2. GeburtstagsKalender: a class semantically equivalent to
BirthdayCalender

an object with the “wrong” interface. The client can use the
adapter as if he would be working with the candidate to adapt
directly. That is, all incoming messages are forwarded to the
candidate and messages delivered by it are propagated back to
the client. If the method names setBirthday and setGeburtstag
would be the only mismatch, it would be sufficient to forward
the parameters. However, in this case, mismatches on object
data types exist. Therefore, more effort is required by the
adapter to provide a suitable transformation mechanism.

In a former publication, we clarified the difference be-
tween adaptation and transformation [19]. Transformation
complements adaptation and becomes relevant when adap-
tation cannot be applied. In the given example, adaptation
would potentially solve the problem of the mismatching
parameter types by creating adapters Datum2Date and Per-
son2Person. These adapters are used by the adapter Birthday-
Calendar2GeburtstagsKalendar within the setBirthday method.
The arriving instance of Date would be set then to the
Datum2Date adapter by a method setAdaptee as the candidate
to adapt. This adapter can then be forwarded as a parameter
to the setGeburtstag method. However, in order to create
such an adapter, it must be able to subclass the parameter
types Datum and Person of the GeburtstagsKalender. This
is not possible in this case because of the final declaration
in the given case for Person and Datum. In this former
publication, we explained how transformation can be part of
an adapter for building a facade, as a sophisticated example,
however, we did not provide a more fine grained distinction for
transformations and did not relate the problem on transforming
state with type isomorphism. We also did not explain the main
difference between objects from the object-oriented world and
the abstract data types, used by the web service community in
the web service description language, and did not mention the
need for applying the transformation mechanism (and therefore
also the adaptation mechanism) recursively, as well as the

TABLE I. REQUIRED METHOD MATCHINGS FOR A PERSON TO
SUPPORT OBJECT TRANSFORMATION

Output Method (Provided Instance) Input Method (Expected Instance)
getName setName
getSurname setNachname
getAddress setAddress

requirements for performing a transformation on an object
type.

In the next section we provide an overview of the different
challenges that need to be addressed in order to provide a
transformation mechanism to complement adaptation.

IV. PROVIDING A TRANSFORMATION MECHANISM

In order to provide a transformation mechanism, it is
necessary to access the state provided by an object instance.
Therefore, at least some of the following preconditions need
to be fulfilled:

• the state can be accessed through the attributes pro-
vided by the object,

• the state can be accessed through the method(s) pro-
vided by the object.

According to the information hiding principle originally
proposed by Parnas [11] objects should provide access to their
internal attributes only through methods that are visible to the
outside only. In order to investigate and access the methods
on a given type in the Java language the Java Reflection API
can be used. In the following, different case are considered,
starting from low-level complexity to high-level complexity.
The presented problems are enriched with intuitive solutions,
but it is up to future research to investigate if these problems
can be solved efficiently.

Case 1: In order to transform the state from the Person
instance delivered by the setBirthday method to an instance of
a Person expected by the setGeburtstag method, the method
matchings shown in Table I have to be realized. The first
column names the method of the provided instance whose
output parameter needs to be set as an input parameter of the
method of the expected instance in the second column.

To transform a Date instance to a Datum instance, the
corresponding method matchings are shown in Table II. This
challenge of matching output to input values has already
been tackled by the web-service community [20], but has
not been applied to objects in the context of object-oriented
programming. There is a difference between an object and
an abstract data type specified as a complex type in a web
service description language (WSDL). A complex type does
not provide any functionality through methods and WSDL
prefers to use the xml schema definition, which provides a
set of built-in data types, whereas an object from an object-
oriented programming language can be of any type.

Case 2 The given example requires a flat transformation
only, i.e., the parameter data types provided by the output
methods are primitive data types only. The type of the address
attribute of the type Person from the BirthdayCalendar can be
changed to an an object type Address that holds data about
the address, such as street and city, which can be set and
retrieved by corresponding setter and getter methods again.

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

Client

<<interface>>
BirthdayCalendar

-dateMap : Map<Person, Date>

+setBirthday(Date, Person): void
+getBirthday(Person): Date

BirthdayCalendar2GeburtstagsKalender

-new: GeburtstagsKalender
-datumMap : Map<Person, Datum>

+setGeburtstag(Datum, Person): void
+getGeburtstag(Person): Datum

GeburtstagsKalender

-datumMap : Map<Person, Datum>

+setGeburtstag(Datum, Person): void
+getGeburtstag(Person): Datum

Figure 3. Adapter BirthdayCalendar2GeburtstagsKalender which adapts GeburtstagsKalendar

TABLE II. REQUIRED METHOD MATCHINGS FOR A DATE TO
DATUM TO SUPPORT OBJECT TRANSFORMATION

Output Method (Provided Instance) Input Method (Expected Instance)
getYear setJahr
getMonth setMonat
getDay setTag

The type of adresse of the Person type expected by the
GeburtstagsKalender can be changed to an object type Adresse
accordingly, i.e., to an object type that is semantically equal but
superficially incompatible. The problem of state transformation
then needs to be applied recursively.

Case 3 Suppose the Person type of the BirthdayCalendar
does not manage all its data by means of single fields, but
by an internal array where each position specifies the content.
For example, the position 0 might specify the name, position 1
the surname and position 2 the address, where for address the
primitive data type, String, is assumed again. This array can be
set by a setInformation(String[] data) method and retrieved by
a getInformation():String[] method accordingly. In such a case,
to provide a transformation mechanism, the array instance
needs to be retrieved by the getInformation method and all
possible permutations need to be applied as method invocation
on the methods setJahr, setMonat and setTag, to set the content
from the array to an instance of type Person appropriately as
expected by the GeburtstagsKalender.

Case 4: Suppose the opposite situation to that stated
in Case 3 occurs, i.e., suppose the Person type of Geburt-
stagsKalender expects an array of values describing the person,
and suppose the Person type of the BirthdayCalendar uses
single fields instead as in the initial example. Then, the adapter
performing the transformation mechanism needs to create a
new array instance which is then filled by invoking the getter
methods on the delivered Person instance. This again requires
that all possibilities are permutated in the worst case.

V. CONCLUSION

The aim of this position paper is to highlight the problem
of transforming the state of object instances. This problem
occurs when a provided interface delivers an object type, but

the expected interface expects an object instance that is super-
ficially incompatible with the type of the delivered instance
and an adaptation mechanism itself can not be applied. In this
paper we have used two implementations of birthday calendars
from different developers that are are not connected by a
type hierarchy, but provide the same semantics, to illustrate
the problem. These types have the same functionality, i.e.,
the only differences are syntactic. Even semantic differences
do not necessarily stop a transformation mechanism from
being applied because transforming the state from a provided
instance to an expected instance may be enough to let the
expected interface use it. For example, a queue and a stack
only share similar semantics. Equivalence is attained, however,
when the queue instance created by transformation satisfies
the expected interface. For this transformation, elements are
retrieved from the stack and set in a queue instance which
is forwarded. In the optimal case, this should be performed
fully automatically by a transformation mechanism provided
by the adapter. This problem of state transformation is, to
the best of the author’s knowledge, neglected in the literature
so far. However, it needs to be tackled because object types
provide an important signature mismatch problem to be solved.
The availability of mechanisms to solve this problem fully
automatically could, for example, significantly increase the
recall of code search engines. Therefore, more tools and
approaches need to be developed to automatically solve this
problem.

REFERENCES

[1] M. Lenz, H. A. Schmid, and P. F. Wolf, “Software reuse through
building blocks,” IEEE Software, vol. 4, no. 4, pp. 34–42, July 1987.

[2] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais, “The
vocabulary problem in human-system communication,” Communica-
tions of the ACM, vol. 30, no. 11, pp. 964–971, November 1987, DOI:
10.1145/32206.32212.

[3] S. Becker, A. Brogi, I. Gorton, S. Overhage, A. Romanovsky, and
M. Tivoli, “Towards an engineering approach to component adaptation,”
in Architecting Systems with Trustworthy Components, ser. Lecture
Notes in Computer Science, R. Reussner, J. A. Stafford, and C. Szyper-
ski, Eds. Springer Berlin Heidelberg, 2006, vol. 3938, pp. 193–215,
DOI: 10.1007/11786160 11.

[4] O. Hummel and W. Janjic, “Test-driven reuse: Key to improving
precision of search engines for software reuse,” in Finding Source Code
on the Web for Remix and Reuse, S. Sim and R. Gallardo-Valencia, Eds.

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

Springer New York, 2013, pp. 227–250, DOI: 10.1007/978146146596-
6 12.

[5] S. Kell, “Component adaptation and assembly using interface relations,”
in Proceedings of the ACM international conference on Object oriented
programming systems languages and application, ser. OOPSLA’10,
vol. 45, no. 10. New York, NY, USA: ACM, 2010, pp. 322–340,
DOI: 10.1145/1869459.1869487.

[6] M. Rittri, “Using types as search keys in function libraries,” Journal of
Functional Programming, vol. 1, no. 1, pp. 71–89, 1991.

[7] C. Runciman and I. Toyn, “Retrieving re-usable software components
by polymorphic type,” Journal of Functional Programming, vol. 1,
no. 2, pp. 191–211, 1991.

[8] R. D. Cosmo, Isomorphisms of Types: from lambda calculus to infor-
mation retrieval and language design, R. V. Book, Ed. Birkhäuser,
1995.

[9] G. Booch, “Object-oriented development,” IEEE Transactions on Soft-
ware Engineering, vol. SE-12, no. 2, pp. 211–221, 1986.

[10] B. C. Pierce, Types and Programming Languages. The MIT Press,
2002, ISBN: 978-0262162098.

[11] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” in Communications of the ACM, vol. 15, no. 12. ACM,
1972, pp. 1053–1058, DOI: 10.1145/361598.361623.

[12] O. Hummel and C. Atkinson, “Extreme harvesting: Test driven dis-
covery and reuse of software components,” in Proceedings of the
International Conference on Information Reuse and Integration, ser.
IEEE-IRI, 2004, pp. 66 – 72.

[13] ——, “Automated creation and assessment of component adapters with
test cases,” in Component-Based Software Engineering, ser. Lecture
Notes in Computer Science, L. Grunske, R. Reussner, and F. Plasil,
Eds., vol. 6092. Springer Berlin Heidelberg, 2010, pp. 166–181, DOI:
10.1007/9783642132384 10.

[14] O. A. L. Lemos, S. Bajracharya, J. Ossher, P. C. Masiero, and C. Lopes,
“A test-driven approach to code search and its application to the reuse of
auxiliary functionality,” Information and Software Technology, vol. 53,
no. 4, pp. 294–306, April 2011, DOI: 10.1016/j.infsof.2010.11.009.

[15] S. P. Reiss, “Semantics-based code search,” in Proceedings of
the 31st International Conference on Software Engineering (ICSE
2009). IEEE Computer Society, 2009, pp. 243 – 253, DOI:
10.1109/ICSE.2009.5070525.

[16] D. Seiffert and O. Hummel, “Adapting arrays and collections: Another
step towards the automated adaptation of object ensembles,” in Lecture
Notes in Computer Science, ICSR 2015, ser. Lecture Notes in Computer
Science, I. Schaefer and I. Stamelos, Eds., vol. 8919. Springer
International Publishing Switzerland, 2015, pp. 348 – 363.

[17] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 16, no. 6, pp. 1811–1841, 1994.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Pearson Education,
1994, ISBN: 9780321700698.

[19] D. Seiffert and O. Hummel, “How adaptation and transformation
complement each other to potentially overcome signature mimismatch
on object data types on the basis of test-cases,” in Adaptive 2015:
The Seventh International Conference on Adaptive and Self-Adaptive
Systems and Applications. IARA, 2015, pp. 98–102, ISBN: 9781-
612083919.

[20] H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and
F. Casati, “Semi-automated adaptation of service interactions,” in Pro-
ceedings of the 16th international conference on World Wide Web, 2007,
pp. 993–1002.

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-463-3

ADAPTIVE 2016 : The Eighth International Conference on Adaptive and Self-Adaptive Systems and Applications

