
An Emerging Automation Framework for Adaptive Video Games

Muhammad Iftekher Chowdhury, Michael Katchabaw
Department of Computer Science

University of Western Ontario
London, Canada

{iftekher.chowdhury, katchab}@uwo.ca

Abstract—Previous attempts at adaptive video games can be
characterized as ad-hoc from a software engineering
perspective; lacking rigor, structure, and reusability, with
custom solutions per game. There is a critical need for software
frameworks, patterns, libraries, and tools to enable adaptive
systems for games. In this paper, we present architecture of a
semi-automatic framework that leverages code generation
based on design patterns to introduce adaptability in video
games. We also discuss key responsibility and implementation
choices for each components of the framework.

Keywords-adaptive video game; design patterns; game
development process; software quality; adaptibility automation

I. INTRODUCTION
It is becoming increasingly clear that games must be

adaptive in nature — malleable and able to reshape to the
needs, expectations, and preferences of the player [2].
Adaptive systems are designed to excel at situations that
cannot be completely or singularly modeled prior to
development, and so they must be able to satisfy
requirements that arise only after they are put in use; this is
very much the case in games. Nearly every aspect of a game
can be made adaptive in this way: the game world (structural
elements, composition); the population of the world (the
agents or characters in the world); any narrative elements
(story, history, or back- story); gameplay (challenges,
obstacles); the presentation of the game to the player
(visuals, music, sound); and so on. In being adaptive, games
can provide more compelling, engaging, immersive, and
perhaps personalized or customized experiences to their
player, leading to a significantly better outcome for the
player, and far more success for the game in the end [2].

The software engineering literature on adaptive systems
provides various solutions focusing on software
requirements, system architectures, software design patterns,
and so on. Unfortunately, it is difficult to directly apply
adaptive systems work from other domains to video games
[10]. Games do more than deliver functionality as in other
software systems; there is a larger emphasis on engagement,
immersion, and experience, as well as greater demands on
interactivity and real-time performance and presence. These
factors require careful consideration often not required in
other domains.

Furthermore, the adaptive video game literature primarily
focuses on algorithms, frameworks, empirical studies and
game design activities but rarely takes any benefits from the
progress in adaptive system literature. Previous attempts at

adaptability in video games can be characterized as ad-hoc
from a software engineering perspective; lacking rigor,
structure, and reusability, with custom solutions per game,
which is not acceptable [10]. There is a critical need for
reusable software infrastructure to enable the construction of
adaptive games [11]. Addressing this problem is the broad
goal of our research. While this is a difficult goal to achieve
[2], both from theoretical and practical perspectives, we have
found success in this area by leveraging software design
patterns [1].

In our earlier work [11], we discussed our design pattern
based approach to adaptive games and demonstrate the
effectiveness of our approach through case studies. Our
current goal is to create tool support that will assist
developers in introducing adaptability in video games using
the design patterns. Existing literature (e.g., [14][20])
suggest that design patterns are specifically suitable for code
generation. We also noticed a high percentage of code
reusability while using these design patterns during our
earlier case studies. Motivated from these points, in this
paper, we present the architecture of a semi-automatic
framework that leverage code generation based on design
patterns to introduce adaptability in video games.

The rest of this paper is organized as follows. In Section
II, we discuss the literature reviewed. In Sections III and IV,
we describe the design patterns for adaptive video games and
motivation behind our current work. In Section V, we
present architecture of a semi-automatic framework that
leverage code generation based on design patterns to
introduce adaptability in video games. In Section VI, we
conclude the paper.

II. RELATED WORK
In recent years, adaptive video games and auto dynamic

difficulty have received notable attention from numerous
researchers. Some of this research is primarily focused on
knowledge seeking, whereas other works present solutions
such as frameworks and algorithms. Additionally, in some
research, new solutions are presented together with empirical
validations. In below sub-sections, we review some of these
works.

A. Adaptive Game
In the highly influential work [4], Charles and Black

propose a framework for adaptive video games incorporating
ideas of player-centered game design comprising four key
aspects: player modeling, adaptive game environments in

103Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

response to player needs, monitoring the effectiveness of any
adaptation, and dynamic player classification. They also
proposed several neural network approaches for instantiating
this framework.

Andrade et al. [7] developed a 2D fighting game where
players utilized one of the four strategies: random, state-
based, traditional (optimal) reinforcement learning (ORL
agent), and adaptive reinforcement learning (ARL agent).
Their results showed that the ARL agent was able to adapt to
all three types of opponents with a relatively small number of
games played.

Togelius et al. [9] attempted to evolve tracks of racing
games that fit the players' driving styles to increase overall
entertainment. Tracks were given a number of control points
based on different implementations and the adaptation
algorithm used these control points as locations to alter the
shape of the track. They found that using a segment based
method of control point distribution resulted in tracks having
long straight paths for beginner players and sharper turns for
advanced players.

B. Auto Dynamic Difficulty
Bailey and Katchabaw [3] developed an experimental

testbed based on Epic’s Unreal engine that can be used to
implement and study auto dynamic diificulty in games. A
number of mini-game gameplay scenarios were developed in
the test-bed and these were used in preliminary validation
experiments.

Rani et al. [17] suggested a method to use real time
feedback, by measuring the anxiety level of the player using
wearable biofeedback sensors, to modify game difficulty.
They conducted an experiment on a Pong-like game to show
that physiological feedback based difficulty levels were more
effective than performance feedback to provide an
appropriate level of challenge. Physiological signals data
were collected from 15 participants each spending 6 hours in
cognitive tasks (i.e., anagram and Pong tasks) and these were
analyzed offline to train the system.

Hunicke [18] used a probabilistic model to design
adaptability in an experimental first person shooter (FPS)
game based on the Half-life SDK. They used the game in an
experiment on 20 subjects and found that adaptive
adjustment increased the player’s performance (i.e., the mean
number of deaths decreased from 6.4 to 4 in the first 15
minutes of play) and the players did not notice the
adjustments.

Hao et al. [19] proposed a Monte-Carlo Tree Search
(MCTS) based algorithm for auto dynamic difficulty to
generate intelligence of non player characters. Because of the
computational intensiveness of the approach, they also
provided an alternative based on artificial neural networks
(ANN) created from the MCTS. They also tested the
feasibility of their approach using Pac-Man.

Hocine and Gouaïch [16] described an adaptive approach
for pointing tasks in therapeutic games. They introduced a
motivation model based on job satisfaction and activation
theory to adapt the task difficulty. They also conducted
preliminary validation through a control experiment on eight
healthy participants using a Wii balance board game.

III. DESIGN PATTERNS
In this section, we briefly discuss the four design patterns

for enabling adaptability in video games. For further details,
the reader is encouraged to refer to [10] for elaborated
discussion and examples.

A. Sensor Factory
The sensor factory pattern is used to provide a systematic

way of collecting data on a game and its players, and provide
those data to the rest of the adaptive system. Sensor (please
see Figure 1) is an abstract class that encapsulates the
periodical collection and notification mechanism. A concrete
sensor realizes the Sensor and defines specific data collection
and calculation. The SensorFactory class uses the “factory
method” pattern to provide a unified way of creating any
sensors. Before creating a sensor, the SensorFactory checks
in the Registry data structure to see whether the sensor has
already been created. If created, the SensorFactory just
returns that sensor instead of creating a new one. Otherwise,
it verifies with a ResourceManager whether a new sensor
can be created without violating any resource constraints.

Figure 1. Sensor factory design pattern.

B. Adaptation Detector
With the help of the sensor factory pattern, the

AdaptationDetector (please see Figure 2) deploys a number
of sensors in the game and attaches observers to each sensor.

Figure 2. Adaptation detector design pattern

Observer encapsulates the data collected from sensor, the
unit of data (i.e., the degree of precision necessary for each
particular type of sensor data), and whether the data is up-to-

104Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

date or not. AdaptationDetector periodically compares the
updated values found from Observers with specific
Threshold values with the help of the ThresholdAnalyzer.
Each Threshold contains one or more boundary values as
well as the type of the boundary (e.g., less than, greater than,
not equal to, etc.). Once the ThresholdAnalyzer indicates a
situation when adaptation might be needed, the
AdaptationDetector creates a Trigger with the information
that the rest of the adaptation process might need.

C. Case Based Reasoning
While the adaptation detector determines the situation

when an adjustment is required by creating a Trigger, case
based reasoning (please see Figure 3) formulates the
Decision that contains the adjustment plan. The
InferenceEngine has two data structures: the TriggerPool
and the FixedRules. FixedRules contains a number of Rules.
Each Rule is a combination of a Trigger and a Decision. The
Triggers created by the adaptation detector will be stored in
the TriggerPool. To address the triggers in the sequence they
were raised in, the TriggerPool should be a FIFO data
structure. The FixedRules data structure should support
search functionality so that when the InferenceEngine takes a
Trigger from the TriggerPool, it can scan through the Rules
held by FixedRules and find a Decision that appropriately
responds to the Trigger.

Figure 3. Case based reasoning design pattern

D. Game Reconfiguration
Once the adaptive system detects that an adjustment is

necessary, and decides what and how to adjust the various
game components, it is the task of the game reconfiguration
pattern (please see Figure 4) to facilitate smooth execution of
the decision. The AdaptationDriver receives a Decision
selected by the InferenceEngine (please see case based
reasoning in previous subsection) and executes it with the
help of the Driver. Driver implements the algorithm to make
any attribute change in an object that implements the State
interface (i.e., that the object can be in ACTIVE,
BEING_ACTIVE, BEING_INACTIVE or INACTIVE
states, and outside objects can request state changes). As the
name suggests, in the active state, the object shows its usual

behavior whereas in the inactive state, the object stops its
regular tasks and is open to changes. In the being inactive
state, the game finishes the existing tasks based on the
already processed player inputs but does not start any new
task. In the being active state, the game does not start task
based on player input and is not open to any new changes.
The Driver takes the object to be reconfigured, details of the
attribute to be changed and the changed attribute value as
inputs. The Driver requests the object that needs to be
reconfigured to be inactive. When the object becomes
inactive, it reconfigures the object as specified. After that, it
requests the object to be active and informs the
AdaptationDriver when the object becomes active. The
GameState maintains a RequestBuffer data structure to
temporarily store the inputs received during the inactive state
of the game. The GameState overrides Game’s event
handling methods and game loop to implement the State
interface.

Figure 4. Game reconfiguration design pattern

E. Integration of Design Patterns
In [15], Salehie and Tahvildari described integration of

four generic steps for an adaptation process namely
monitoring, detecting, deciding, and acting. The four design
patterns discussed in previous sub-sections work on the same
process flow. In this Section, we briefly re-discuss how they
work together to create a complete adaptive system (please
see Figure 5).

Figure 5. Four design patterns working together in a game

 The sensor factory pattern uses Sensors to collect data
from the game so that the player’s perceived level of
difficulty can be measured. The adaptation detector pattern
observes Sensor data using Observers. When the adaptation

105Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

detector finds situations where difficulty needs to be
adjusted, it creates Triggers with appropriate additional
information. Case based reasoning gets notified about
required adjustments by means of Triggers. It finds
appropriate Decisions associated with the Triggers and
passes them to the adaptation driver. The adaptation driver
applies the changes specified by each Decision to the game,
to adjust the difficulty of the game appropriately, with the
help of the Driver. The adaptation driver also makes sure that
the change process is transparent to the player. In this way,
all four design patterns work together to create a complete
adaptive system for a particular game.

F. Achieving Adaptive Gameplay
So far we have used these design patterns for

implementation of a specific type of adaptability in video
games known as auto dynamic difficulty. But in principle
these design patterns should be sufficient to implement more
complex form of adaptability in game-play.

Figure 6. Concept of multi dimensional adaptive gameplay

Figure 6 depicts our position of a multidimensional
adaptive game-play. For example, we have chosen two
aspects of the game to adjust adaptively. One is level
structure and puzzle attributes. And the other is combat
difficulty. There are number of rules and other associated
artefacts (i.e., sensors, observers, triggers and decisions)
focused on each of these aspects. In a particular level
structure and puzzle attributes with minimum combat
difficulty the player may experience a maze type game
whereas with a high combat difficulty and simple level
structure and puzzle attributes the player may experience a
fighting game. Nearly every aspect of a game can be made
adaptive in this way: the game world (structural elements,
composition); the population of the world (the agents or
characters in the world); any narrative elements (story,
history, or back-story); game-play (challenges, obstacles);
the presentation of the game to the player (visuals, music,
sound); and so on.

IV. MOTIVATION FOR AUTOMATION
In this section, we discuss two key motivations behind

our automation effort: the repeatable nature of the process
for applying the design patterns and source code reusability

achieved through the usage of the design patterns for
implementing adaptability in video games.

A. Repeatable Process
Applying our software design pattern based framework

for adaptability to a large commercial-scale game such as
Minecraft [13], seemed to be a daunting task, at least on the
surface. Thus, the process described in Table I was
developed to formalize our experiences from using it in Pac-
Man [10] and TileGame [11] to assist in the adaptability-
enablement of larger games such as Minecraft. In practice,
we found that applying such a methodical process enabled
adaptability in Minecraft quite readily, and that our approach
was easily adapted for use in this rather foreign environment
with no more significant changes than we found in our
earlier work with much simpler games. This is a key
motivation for our current work as concrete activities (such
as the ones in Table I) are easier to build a tool upon.

TABLE I. ADAPTIVE GAME IMPLEMENTATION PROCESS

Activity Output

1 Identify the aspects of the game that will be
adaptively adjusted.

2 For each of the aspects identified in step-1 repeat
step-3 to step-9.

3 Define or reuse available sensors. Sensors
4 Identify or introduce attributes that can be adjusted.

5 Identify adaptation scenarios involving sensors and
attributes from step-3 and step-4.

6
Define thresholds based on the scenarios identified
in step-5 for the sensors defined in step-3, and
define observers to relate thresholds to sensors.

Thresholds,
Observers

7
Define triggers to represent each scenario, and
develop the adaptation detector logic based on the
scenarios.

Triggers

8
Use attributes identified in step-4 to create decisions
to modify game difficulty according to the scenarios
identified in step-5.

Decisions

9 Define rules to relate triggers to decisions based on
the adaptation scenarios identified in step-5.

Rules

B. Reusable Source Code
We have also carried out a source code analysis of these

games. In [11], the Minecraft adaptability implementation
was compared to the adaptability implementations of Pac-
Man and TileGame. During this analysis, we have noticed
that a large percentage of the resultant code is generalization
and instantiation of other high level classes (e.g., Sensors,
Triggers, Thresholds, and Decisions etc.).

TABLE II. CATEGORIZATION OF THE ADAPTIVE SOURCE CODE

Category of Source Code SLOC %
Completely reusable 600 74.26
Specialization (Concrete Sensors (64) and
Concrete Decisions (22))

86 10.64

Instantiation (Adaptation Detector (70) and
Inference Engine (11))

81 10.02

Other logic 41 5.07
Total 808

106Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

In Table II, we provide a summary of the analysis
derived from the results presented in [11]. Here, we can see
that 74.26% source code remained the same from earlier
projects. Also, 10.64% source code is specializations and
10.02% code is for instantiation. Only 5.07% source code is
other specific game logic. The specialization and
instantiation (20.66%) related source code of the adaptive
system consists of similar looking classes and statements.
This result motivates us to create a tool that will allow us to
develop and maintain these artifacts in a semi-automatic
manner.

V. AUTOMATION FRAMEWORK
Figure 7 depicts a high level decomposition of our semi-

automatic system. The key idea is to represent part of the
adaptive logic as a relational model that is mutable. The core
software elements are divided into four components: (i)
Collector and Executor, (ii) Enhancer, (iii) Manager, and (iv)
Translator. The collector and executor component interfaces
the relational model with the game in question. It collects
meta-information from the game’s source code as well as
runtime logging information and passes that to the model. It
can also execute modification instructions presented in the
model. The manager component provides graphical user
interfaces to easily manipulate the model. The enhancer
component facilitates the decision making process (i.e.,
when, how and to what degree to modify the game). The
purpose of the translator component is translating the
relational model, when finalized, to executable software
artifacts (i.e., source code). In the following subsections, we
discuss each of these components in further detail.

Figure 7. Components of the semi-automatic framework

A. Relational Model
Central to the framework is a relational model, as all the

other components use it as a repository for all of their
information. This is essentially storage for a set of objects
and relations that represent much of the dynamic information
(e.g., Sensor’s name, relations between sensors and
attributes, etc.) for an intended adaptive system as well as
some meta-information (e.g., attributes, logging information,
etc.). The structure of the model is derived from the design
patterns described earlier and is not dependent on the
platform or genre of the video game. There should be
appropriate APIs for other components to collect information
from the model. Implementation choices for the relational
model include databases, XML storage, file based data
structures, amongst others.

B. Collector and Executor
The collector and executor component interfaces the

relational model with the game and thus should depend on
the platform of the game. The collector needs to be
configured with some base level objects (e.g., game world,
player, enemies, inventory etc.). For the rest of the system to
work, the collector needs to conduct a Breadth-First Search
(BFS) starting from those base level objects and populate the
model with a list of attributes and related data types using a
hierarchical storage method such as recursive relations.
Many languages provide programmatic ways (e.g., Java
reflection) to collect such information with ease.

We have identified some key challenges regarding the
implementation of the executor and the relational model:

- Identifying the depth of the object hierarchy to search,

- Representing relationships other than hierarchical ones
and representing shared objects,

- Representing any run time changes on the hierarchy.

The executor can execute modification instructions
presented as decisions in the relational model and the
collector can collect more information based on those
modifications.

C. Manager
The manager is another generic component that does not

need to be aware of the details of the rest of the system and
the platform other than the relational model. It is a collection
of graphical user interfaces and business logic to easily
manage the relational model. Once the attributes are
recorded by the collector, they can be marked to be
monitored using this component.

D. Enhancer
The enhancer is also a generic component and only needs

to interact with the model and thus can be implemented in
any language and need not be aware of the game’s platform.
It is a collection of tools that helps the game designer or
developer to make decisions about which attributes to
monitor, threshold values, which attributes to modify and to
what degree, amongst others. It usually works on data

107Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

collected by the collector. Here we give examples of such
tools:

- Statistical analysis: Such as factor and co-relation
analysis.

- Graphical analysis: Such as curve fitting.

- Machine learning: For example, in [6], Southey et al.
described an active learning based semi-automatic gameplay
analysis tool that interacts with game-engine or frameworks
like this one through an abstraction layer and mainly consists
of a sampler, a learner and a visualizer component. The
usage of the tool is demonstrated in commercial context (i.e.,
Electronic Art’s [5] FIFA’99).
E. Translator

The translator component needs to be aware of the
platform of the video game and needs to generate the
artifacts accordingly. It can either directly translate to source
code or generate an intermediate marked up description
suitable for other code generation tools. The code generation
logic is often quite straight-forward. For each file (e.g., Java
class), the static parts of the code need to be predefined and
the translator injects the dynamic parts as necessary. Please
see literature on source code generation (e.g., [8]) for
elaborated discussion and methodologies.

Benefits of such semi automatic tools include reducing
efforts and defects, standardization, ease of progress
measurability and improving maintainability, etc.

VI. CONCLUDING REMARKS
There is a critical need for software frameworks,

patterns, libraries, and tools to enable adaptive systems for
games. We have found success in this area by leveraging
software design patterns. In this paper, we present
architecture of a semi-automatic framework that leverage
code generation based on design patterns to introduce
adaptability in video games. Benefits of such a tool include
minimizing developer efforts and increasing maintainability.
We designed the framework following a loosely coupled
architecture that is generalizable across various platforms.
We will discuss a prototype (preliminary discussion of a
proof-of-concept prototype and its usage can be found in
[12]) based on this framework in our subsequent work. We
also encourage other researchers to extend our framework as
appropriate.

REFERENCES
[1] A. J. Ramirez and B. H. Cheng, "Design patterns for

developing dynamically adaptive systems," In Proceedings of
2010 ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, 2010, pp. 49 - 58.

[2] A. Glassner, Interactive Storytelling: Techniques for 21st
Century Fiction. A K Peters, Ltd., 2004.

[3] C. Bailey and M. Katchabaw, "An experimental test bed to
enable auto-dynamic difficulty in modern video games," In
Proceedings of the 2005 North American Game-On
Conference, 2005, pp. 18-22.

[4] D. Charles and M. Black, "Dynamic Player Modelling: A
Framework for Player-Centered Digital Games," In

Proceedings of the International Conference on Computer
Games: Articial Intelligence, Design and Education, 2004, pp.
8-10.

[5] EA Sports, Retrieved from: http://www.easports.com/. Last
accessed: Feb 14, 2015.

[6] F. Southey, G. Xiao, R. C. Holte, M. Trommelen, and J.
Buchan, "Semi-Automated Gameplay Analysis by Machine
Learning," in Proceedings of the 1st Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE-05),
2005, pp. 123-128.

[7] G. Andrade, G. Ramalho, H. Santana, and V. Corruble,
"Challenge-sensitive action selection: an application to game
balancing," In Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology,
2005, pp. 194-200.

[8] Herrington, J. “Code Generation in Action,”. Manning
Publications Co., 2003.

[9] J. Togelius, R. D. Nardi, and S. M. Lucas, "Towards
automatic personalised content creation for racing games," In
Proceedings of the IEEE International Symposium on
Computation Intelligence and Games (CIG 2007), 2007, pp.
252-259.

[10] M. I. Chowdhury and M. Katchabaw, "Software design
patterns for enabling auto dynamic difficulty in video games,"
In 17 International Conference on Computer Games, 2012,
pp. 76 - 80.

[11] M. I. Chowdhury and M. Katchabaw, " A Software Design
Pattern Based Approach to Adaptive Video Games," In
Proceedings of the 5th International Conference on Adaptive
and Self-Adaptive Systems and Applications (ADAPTIVE-
2013), 2013, pp. 40 - 47.

[12] M. I. Chowdhury. 2014 "A Software Design Pattern Based
Approach to Auto Dynamic Difficulty in Video Games," PhD
Thesis, University Of Western Ontario. Can be accessed
online at: http://ir.lib.uwo.ca/etd/2522/. Last accessed: Feb 14,
2015.

[13] Minecraft, Retrieved from: https://minecraft.net/. Last
accessed: Feb 14, 2015.

[14] M. Ohtsuki, N. Yoshida, and A. Makinouchi, "A source code
generation support system using design pattern documents
based on SGML," in Proceedings of the 6th Asia Pacific
Software Engineering Conference (APSEC '99) , pp.292-299.

[15] M. Salehie and L. Tahvildari, " Self-Adaptive Software:
Landscape and Research Challenges," In ACM Transactions
on Autonomous and Adaptive Systems, 2009, May 2009, Vol.
4, No. 2, Article 14.

[16] N. Hocine and A. Gouaïch, " Therapeutic games' difficulty
adaptation: An approach based on player's ability and
motivation," In Proceedings of 16th International Conference
on Computer Games (CGAMES), 2011, pp. 257 - 261.

[17] P. Rani, N. Sarkar, and C. Liu, "Maintaining optimal
challenge in computer games through real-time physiological
feedback," In Proceedings of 11th International Conference
on Human-Computer Interaction, 2005, pp. 184-192.

[18] R. Hunicke, "The case for dynamic difficulty adjustment in
games," In Proceedings of 2005 ACM SIGCHI International
Conference on Advances in computer entertainment
technology (ACE 2005), 2005, pp. 429-433.

[19] Y. Hao, S. He, J. Wang, X. Liu, J. Yang, and W. Huang,
"Dynamic difficulty adjustment of game AI by MCTS for the
game Pac-Man," In Proceedings of 6th International
Conference on Natural Computation (ICNC 2010), 2010, pp.
3918-3922.

[20] Y. Seo and Y. Song. 2006. A study on automatic code
generation tool from design patterns based on the XMI.
In 2006 International Conference on Computational Science
and Its Applications - Volume Part IV, pp. 864-887.

108Copyright (c) IARIA, 2015. ISBN: 978-1-61208-391-9

ADAPTIVE 2015 : The Seventh International Conference on Adaptive and Self-Adaptive Systems and Applications

