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Abstract—Existing machine perception systems are brittle
and inflexible, and therefore cannot adapt well to environment
uncertainty. Natural perception always occurs in support of an
activity that provides context. In our approach, we use context
to adapt the perceptual aperatus providing robustness and
resilience to noise among other benefits. Evidence supports the
view that context driven adaptation occurs in natural perception
systems including human vision. This Active Perception approach
prioritizes the system’s overall goals, so that perception and
situation awareness are well integrated with actions to focus all
efforts on these goals in an optimal manner. We use a Partially
Observable Markov Decision Process (POMDP) framework, but
do not attempt to compute a comprehensive control policy, as this
is intractible for practical problems. Instead, we employ Belief
State Planning to compute point solutions from an initial state to a
goal state set. This approach automatically adapts the perception
data flow processes, and generates action sequences for sensing
operations that reduce uncertainty in the belief state, and
ultimately achieve the goal state set. Our early results described
in this paper demonstrate the feasibility of this approach using
a restriced set of actions.

Keywords: Active Perception, POMDP, Belief State Plan-
ning, Context, Adaptation.

I. INTRODUCTION

Natural perception systems such as the human visual system
operate robustly in a wide variety of situations. Machine
vision systems on the other hand have very little flexibility
and tend to be very brittle in the face of environmental
changes. The human visual system adapts with changing
lighting conditions and with changing tasks. Adaptation is
the key to this robustness. Machine vision systems work well
when the environmental conditions and the task remain fixed
but for robots to perceive their environment robustly for a
variety of tasks and in ever changing conditions, requires an
adaptive approach.

In traditional machine vision systems information flow is
bottom up, and generally not guided by knowledge of higher
level context and goals, as shown in Figure 1.

If higher level goals, context, or the environment change,
the specific conditions for which the static configuration is
intended may no longer hold. As a result, the static systems
are prone to error because they cannot adapt to the new
conditions. With few exceptions, such as [1], [2], they do

Figure 1. Sensing today is static and largely bottom-up.

not reason intelligently about dynamically changing goals,
contexts, and conditions, and therefore, are not able to change
to a more appropriate process flow configuration, or to change
their parameter settings in an intelligent way.

In addition to their inflexibility, existing machine perception
systems are often not well integrated into the autonomous and
semi-autonomous systems to which they provide information.
As a result, they are unaware of the autonomous system’s
overall goals, and therefore, cannot make intelligent obser-
vation prioritization decisions in support of these goals. In
particular, it may not be necessary or useful for the perception
system to be aware of every aspect of a situation, and it may
be detrimental, due to resource contention and time limits, to
the overall goal. Examples of autonomous systems operating
in dynamic and uncertain environments, and that depend on
intelligent perception, are shown in Figure 2. In a cyber attack
scenario (sub-figure a), the overall goal of an autonomous
system intended to provide security is to defend against the
attack. Understanding the details of the attack is a subgoal. In
a seaport operation scenario (sub-figure b), the overall goal of
an autonomous control system is to operate the seaport safely
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and efficiently. Understanding seaport activities is a subgoal.
In an auto repair scenario (sub-figure c), the overall goal is to
repair the problem. Diagnosing the problem is a subgoal. In
all three cases, it may not be necessary to understand every
detail of what is happening in order to accomplish the overall
goal.

(a) Cyber attack. (b) Seaport.

(c) Auto repair.

Figure 2. Three example scenarios with dynamic environments.

Consider the automobile repair problem, or more specif-
ically, the problem of changing a tire. This has been a
“textbook” problem for Planning Domain Definition Language
(PDDL) generative planning systems [3], and also a challenge
problem in the Defense Advanced Research Projects Agency
(DARPA) ARM project [4]. There are significant challenges
in building an autonomous system that can perform this task
entirely, or even one that would just assist with the task
(Figure 3). Intelligent machine perception would be needed
for both a fully autonomous system (sub-figure a), and a semi-
autonomous advisory system (sub-figure b). The latter might
include observation drones, and Google glasses [5] to guide
a human user in the repair. Such a system would have to be
able to determine the vehicle type (Figure 4), whether a tire is
actually flat (Figure 5), and what an appropriate sequence of
repair steps should be (Figure 6). It would have to be able to
solve many subproblems, such as reliably finding a wheel in
an image. The system would have to be able to work in many
different environments, a great range of lighting conditions,
and for a comprehensive set of vehicle types.

We address this challenging problem by using a more
dynamic approach in which reasoning about context is used
to actively and effectively allocate and focus sensing and

(a) Fully autonomous system using
robot.

(b) Semi-autonomous advisory sys-
tem.

Figure 3. Semi-autonomous and fully-autonomous systems.

(a) Truck (b) SUV (c) Sedan

Figure 4. Vehicle type, and ultimately, make and model, are useful things
for the perception system to know (or to discover).

(a) Tire is flat. (b) Tire is under-
inflated.

(c) Tire is OK.

Figure 5. The perception system must be able to determine whether a tire is
really flat, and which one it is.

(a) Wheel chock. (b) Remove wheel.

Figure 6. Repair steps include stabilizing the car (a), getting the spare tire
and tools, jacking up the car, removing lug nuts and wheel (b), and

installing the new wheel.

action resources. This Active Perception approach prioritizes
the system’s overall goals, so that perception and situation
awareness are well integrated with actions to focus all efforts
on these goals in an optimal manner. Active perception draws
on models to inform context-dependent tuning of sensors,
direct sensors towards phenomena of greatest interest, to
follow up initial alerts from cheap, inaccurate sensors with
targeted use of expensive, accurate sensors, and to intelligently
combine results from sensors with context information to pro-
duce increasingly accurate results (Figure 7). The model-based
approach deploys sensors to build structured interpretations of
situations to meet mission-centered decision making require-
ments. Actions are calibrated so that they are proportional to
the likelihood of true detection and degree of threat.

We consider, in detail, a subproblem of the tire change
problem: reliably finding the wheels of a vehicle in an image.
We show how the use of top-down, model-based reasoning
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Figure 7. Active Perception uses model-based top-down reasoning, as well
as bottom-up computation, to guide sensing actions.

can be used to coordinate the efforts of multiple perception
algorithms, resulting in more robust, accurate performance
than is achievable through use of individual algorithms op-
erating in a bottom-up way. We also show how our model-
based framework can be used to address the entire tire change
problem.

The rest of this paper is organized as follows. In Section
II, we present informal and formal statements of the problem
to be solved. Section III covers related work, and Section IV
introduces our approach. Sections V, VI, and VII describe the
details of the approach, and Section VIII presents results. We
conclude with a discussion in Section IX.

II. PROBLEM STATEMENT

Given one or more agents operating in an environment, and
given that the agents do not directly know the state of the
environment, or even, possibly, parts of their own state, and
given a goal state for the environment and agents, the problem
to be solved is to compute control actions for the agents such
that the goal is achieved. In this case, an agent is a resource
capable of changing the environment (and its own) state, by
taking action. An agent could be a mobile ground robot, a
sensing device, or one of many parallel vision processing
algorithms running on a cluster, for example. Given that there
is uncertainty in the environment state, because it cannot be
measured directly, an agent must estimate this state as best as
is possible based on (possibly noisy) observations. Similarly,
part of the agent’s state, such as the functional status of its
components, may not be directly measurable, and must be
estimated. Based on the agent’s best estimate of the current
environment state (and its own state), it should take actions
that affect the state in a beneficial way (move the state towards
the goal). The actions, themselves have some uncertainty; they
do not always achieve the intended effect on the state. The
agents must take both state estimate uncertainty, and action
uncertainty into account when determining the best course of
action. Actions can also have cost. The agents must balance

the cost of actions against the reward of reduced uncertainty
and progress towards the goal when deciding on actions.

This problem presents significant challenges. First, the over-
all state space, including environment and agent state, can be
very large; there may be many state variables in the represen-
tation. Second, the state space is generally hybrid; it includes
discrete variables, such as hypotheses for vehicle type, as
well as continuous variables, such as position of a wheel.
Third, significant parts of the state space may not be directly
measurable, and must be estimated based on observations.
The observations (usually sensor data) typically have some
noise. Therefore, the estimates will have some uncertainty.
As a result, the state variables themselves are generally not
represented by a single value, but rather, by a probability
distribution. These distributions must be updated as part of
each state estimation cycle. Fourth, effect of some actions on
state may have uncertainty. Fifth, the agents must take many
considerations into account when deciding on actions: they
must take into account the uncertainty of the state estimate,
the uncertainty of the action effect on the state, the cost of
the action, and the benefit of the action in terms of reducing
uncertainty and making progress towards the goal.

The problem to be solved can be stated formally as follows.
Suppose that the state space is represented by S = {Se,Sa} ,
where Se is the state space associated with the environment,
and, Sa, that associated with the agent. Suppose, further, that
the agent can perform a set of actions, A, and make a set
of observations, O. A state transition model represents state
evolution as a function of current state and action: T : S×A×
S 7→ [0,1]. An observation model represents likelihood of an
observation as a function of action and current state: Ω : O×
A× S 7→ [0,1]. A reward model represents reward associated
with state evolution: R : S×A×S 7→R. Given an initial state s0
and goal states sg, the problem to be solved is to compute an
action sequence a0, . . .an such that sn ∈ sg, and R is maximized.
The agent bases its action decisions on its estimates of the
state, which in turn, is based on the observations. The state
estimates must be sufficiently accurate to support good action
decisions. Note that this problem formulation, expressed in
terms of a single agent, is easily extended to allow for multiple
agents.

III. BACKGROUND AND RELATED WORK

A Partially Observable Markov Decision Process (POMDP)
[6] is a useful framework for formulating problems for au-
tonomous systems where there is uncertainty both in the
sensing and in the results of actions taken. A POMDP is
a tuple 〈S,A,O,T,R,Ω,γ〉 where S is a (finite, discrete) set
of states, A is a (finite) set of actions, O is a (finite) set of
observations, T : S×A×S 7→ [0,1] is the transition model (con-
ditional probabilities for state transitions), R : S×A× S 7→ R
is the reward function associated with the transition function,
Ω : O×A× S 7→ [0,1] is the observation model (conditional
probabilities for state given observation and action), and γ

is the discount factor on the reward. The belief state is a
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probability distribution over the state variables, and is updated
each control time increment using recursive predictor/corrector
equations. First, the a priori belief state for the next time
increment, b̄(sk+1), is based on the a posteriori belief state
for current time increment.

b̄(sk+1) = ∑
sk

Pr (sk+1|sk,ak) b̂(sk)

= ∑
sk

T (sk,ak,sk+1) b̂(sk)
(1)

Next, the a posteriori belief state for the next time increment,
b̂(sk+1), is based on the a priori belief state for next time
increment.

b̂(sk+1) = α Pr (ok+1|sk+1) b̄(sk+1)

= α Ω(ok+1,sk+1) b̄(sk+1)
(2)

α =
1

Pr (ok+1|o1:k,a1:k)
(3)

These equations work well given that the models are known,
and given that the control policy for selecting an action based
on current belief state is known. Unfortunately, computing
these, particularly the control policy, is a challenging problem.
Value iteration [7] is a technique that computes a comprehen-
sive control policy, but it only works for very small problems.
An alternative is to abandon computation of a comprehensive
control policy, and instead, compute point solutions for a
particular initial state and goal state set.

A promising technique for this is Belief State Planning [8],
which is based on generative planner technology [9]. A key
idea in this technique is the use of two basic actions for a
robotic agent: move and look. A move action changes the
state of the robot and/or environment; it may move the robot
in the environment, for example. A look action is intended to
improve the robot’s situational awareness.

The move action is specified using a PDDL-like description
language.

Move(lstart, ltarget)
effect: BLoc(ltarget, eps)
precondition: BLoc(lstart, moveRegress(eps))
cost: 1

The variables lstart and ltarget denote the initial and final
locations of the robot. The effect clause specifies conditions
that will result from performing this operation, if the condi-
tions in the precondition clause are true before it is executed.
Cost of the action is specified in the cost clause.

The function BLoc(loc, eps) returns the belief that the robot
is at location loc with probability at least (1 - eps). The
moveRegress function determines the minimum confidence
required in the location of the robot on the previous step, in

order to guarantee confidence eps in its location at the resulting
step:

moveRegress(eps) =
eps− p f ail

1− p f ail
(4)

where p f ail is the probability that the move action will fail.

The look action is specified as follows:

Look(ltarget)
effect: BLoc(ltarget, eps)
precondition: BLoc(lstart,

lookPosRegress(eps))
cost: 1 - log(posObsProb

(lookPosRegress(eps)))

The lookPosRegress function takes a value eps and returns a
value eps’ such that, if the robot is believed with probability at
least 1 eps’ to be in the target location before a look operation
is executed and the operation is successful in detecting ltarget,
then it will be believed to be in that location with probability
at least 1 eps afterwards.

lookPosRegress(eps) =
eps(1− p f n)

eps(1− p f n)+ p f p(1− eps)
(5)

where p f n and p f p are the false negative and false positive
observation probabilities.

In terms of the POMDP belief state update, the move
action corresponds to the predictor (1), and the look action
corresponds to the corrector (2). It would also be possible
to have actions that include both components. In our work,
because we are currently focused on the observation aspect,
our actions follow the approach of the look action, utilizing the
observation model, but not a transition model. Also, the look
action presented here implies independence of observations. It
supports building confidence by repeatedly applying the look
action (by staring). This makes sense in some contexts, but
not in ones where a static image is being analyzed by an
operator that does not change. Therefore, in our work, we
cannot assume independence and handle the belief state update
in an alternative manner.

For the actual observation algorithms, we make extensive
use of two types of feature detection algorithms: Speeded
Up Robust Features (SURF) [10], and Hough Transforms
[11]. We utilize the Mathworks Computer Vision System
Toolbox [12] implementation of these algorithms. Neither of
these algorithms, used individually, is satisfactory for solving
the wheel detection problem robustly. However, when used
together, in an Active Perception framework, they beneficially
reinforce each others hypotheses, allowing for more reliable
performance.
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IV. APPROACH

In order to achieve the Active Perception capabilities de-
scribed in the Introduction, we define a process for Active
Perception, as shown in Figure 8. The high-level Meta-control
component maintains the system’s current goals, and manages
hypothesis formation and refinement. Hypotheses are main-
tained in a prioritize pool, and are used to guide Sensor Fusion
and Differential Diagnosis and Interpretation components.
These components provide the Meta-control component with
an awareness of the current situation by strenghthening or
weakening hypotheses, based on evidence from the sensors.
The Meta-control component uses this awareness, combined
with goals to be achieved, to task sensors in an optimal way,
such that the goals will be achieved with greatest likelihood
and efficiency.

Figure 8. The Active Perception Process uses hypothesis formation and
refinement to guide tasking of sensors.

In order to make this more concrete, it is useful to consider
what a data flow diagram for the sensors and state estimation
components should look like (if a computer vision expert were
to solve the specific problem of designing an architecture for
finding wheels in an image). Figure 9 shows a network of
sensing components that collaborate to achieve the goal of
finding wheels in an image with a high level of certainty.
Sensing algorithms include feature matching, wheel location
prediction, and Hough ellipse detectors. Each such sensing
algorithm can use the current belief state as input, and can also
adjust belief state as output. Sensing actions perform sensing
operations by setting parameters for the sensing algorithms,
running the algorithms, and interpreting the results. In partic-
ular, the sensing algorithms produce observations, which are
used to update belief state.

This organization based on actions, observations, and belief
state fits well with the POMDP formalism. Unfortunately,
although POMDP’s are a standard method of formulating this
type of problem, solution of the POMDP can be challenging.
In particular, value iteration approaches [7] that attempt to
compute a comprehensive control policy are intractible for all
but the simplest problems.

A promising alternative is to abandon the attempt to com-
pute a comprehensive control policy, and instead, compute
point solutions for a particular initial state and goal state set.
This requires significant runtime computation, but is generally
far more tractable than value iteration for this type of problem.
This approach automatically synthesizes data flow processes

such as the one in Figure 9, and generates action sequences for
sensing operations that reduce uncertainty in the belief state,
and ultimately achieve the goal state set.

We use three main sensing actions: SURF Match, SURF
Match Other Wheel, and Hough Ellipse Match. Each of
these actions has preconditions (requirements for current belief
state), and post conditions (effects on belief state). SURF
Match uses the SURF algorithm to perform a preliminary
detection of a wheel in an image. SURF Match Other Wheel
attempts to find the second wheel, also using SURF, given that
the first wheel has been detected. This action also performs
vehicle pose estimation, and refines the prediction of where the
wheels are. Hough Ellipse Match uses either a Hough Circle or
Hough Ellipse transform algorithm to refine the wheel location
estimates.

The sequence of actions can be computed using a gen-
erative planner. A generative planner searches for action
sequences that satisfy all the precondition and postcondition
constraints, and that maximize the reward function. In order
to be usable for this type of problem, two changes from
traditional generative planning are necessary. First, traditional
generative planners use deterministic operators, but the belief
state representation is probabilistic. To solve this problem, we
determinize the belief state operators used in the pre and post
conditions of the actions [8]. This is accomplished by specify-
ing thresholds for required belief. For example, a precondition
for an action might require that a belief state variable be
true with probability greater than 0.7. A postcondition might
specify that a belief state variable should be true with prob-
ability of 0.8. The second change from traditional generative
planning is in the overall framework in which planning and
control interact. With traditional generative planning, a plan is
generated, and is then executed in its entirety. This approach
is not suitable for our type of problem, given the high levels
of uncertainty, especially for the success of actions. Instead,
we adopt a receding horizon control framework in which a
plan is generated based on the current belief state, but only
the first action of this plan is executed. After the action, the
belief state is updated based on observations, and an entirely
new plan is generated. The process then repeats with the first
action from this new plan being executed. This approach is
computationally intensive, but it ensures that all actions are
based on the most current belief state.

To implement this receding horizon control framework, we
use an architecture consisting of four main components, as
shown in Figure 10. The executive manages the receding
horizon control process. It maintains the current belief state,
and the goal state set. At each control loop iteration, it passes
these to the planner. The planner, if successful, returns a
plan consisting of actions that transition the system from the
current state to a goal state, if there are no disturbances. The
executive takes the first action from the plan and executes it
by dispatching the appropriate sensor operation. The sensor
operation produces an observation, which is used to update
the belief state. The process then repeats.
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Figure 9. Data flow architecture for wheel finding components.

Figure 10. Receding Horizon Control Architecture for Active Perception

The following sections describe each of the components in
this architecture in more detail.

V. EXECUTIVE

The Executive component implements the top-level receding
horizon control loop, coordinating the activities of the planner
and sensor components. Algorithm 1 shows pseudocode. The
Executive accepts as input a goal state set, and an a priori
belief state. It returns indicating success or failure in achieving
a goal state.

The algorithm begins by initializing the belief state ac-
cording to the a priori probabilities, and performing other
initialization (Line 1). Belief state for a discrete state vari-
able is represented as a Probability Mass Function (PMF)
over the possible values of the probabilistic variable. Belief
state for a continuous state variable is represented using a
Gaussian Probability Distribution Function (Gaussian PDF)
with a specified mean and variance. This could be extended
to a representation using a mixture of Gaussians, in order to
approximate more complex, non-Gaussian PDFs.

The receding horizon control loop begins at Line 5. The
first step is to invoke the generative planner in order to
determine the next action. A generative planner requires, as

one of its inputs, the current state in a deterministic form. The
belief state, however, is represented in a probabilistic form,
so it first has to be converted to a deterministic form using
MostLikelyState (Line 6). The input to the generative planner
includes the determinized state, as well as the goal state set.
This input is provided in the form of domain and problem
PDDL files, as will be explained in more detail in Section
VI. The Executive generates these files, and then executes the
planner. The planner generates a result file containing a plan,
which the Executive reads. The entire interaction of initializing
the planner, running it, and retrieving the results is summarized
in Line 7.

The planner may fail to generate a plan, in which case, the
algorithm returns failure. If the planner is successful in gen-
erating a plan, the executive dispatches the first action (Line
11). The action (sensor operation) generates an observation.
The belief state is updated based on this observation (Line
12).

At this point, the algorithm checks whether the goal has
been achieved. (values of the state variables in the goal set
have a sufficiently high belief). If not, the algorithm checks
if the maximum number of allowed iterations have been
exceeded (Line 15). If the maximum iterations haven’t been
exceeded, the algorithm begins a new control cycle, and the
process repeats.

The Executive is implemented in Common Lisp. The Sensor
Action and Belief State Update components are implemented
in Matlab. The Executive communicates with these compo-
nents using the C to Matlab API provided by Mathworks,
combined with the Common Lisp to C foreign function
interface provided by the Common Lisp implementation we
use [13].

VI. PLANNER

The Planner component is implemented using Fast Down-
ward [9], a state of the art generative planner that accepts
problems formulated in the PDDL language [14]. A PDDL
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Algorithm 2: Algorithm 1: Executive

Input: a-priori-belief-state-probabilities, goal-state-set
Output: goal-achieved?

/* Perform initialization. */

1 belief-state ←
InitializeBeliefState(a-priori-belief-state-probabilities);

2 goal-achieved? ← f alse;
3 max-iterations ← 1000;
4 iteration ← 0;

/* Begin control loop. */

5 while not goal-achieved? do
6 current-state ← MostLikelyState(belief-state);
7 plan? ← GeneratePlan(current-state,goal-state-set);
8 if not plan? then
9 return ;

10 action ← First(plan?);
11 observation ← Dispatch(action);
12 belief-state ← UpdateBeliefState(observation);
13 goal-achieved?

← CheckGoalAchieved(belief-state,goal-state-set);
14 iteration ← iteration+1;
15 if iteration > max-iterations then
16 return ;

problem formulation consists of a domain file, and a problem
file. The domain file specifies types of actions that can be used
across a domain of application such as logistics, manufacturing
assembly, or in this case, finding wheels in an image. The
domain file is fixed; it does not change for different problems
within the domain. The problem file, on the other hand,
contains problem-specific information such as initial and goal
states. The Executive generates this file automatically. The
following PDDL domain file fragment shows the definition
of the SURF Match action in PDDL.

(:action SURF-match
:parameters
(?w ?p ?bsv)

:precondition
(and (belief-state-variable ?bsv)

(pose ?p) (wheel ?w)
(for-wheel ?w ?bsv)
(at-pose ?p ?bsv)
(at-belief-level

belief-level-one ?bsv))
:effect
(and (at-belief-level

belief-level-two ?bsv)
(increase

(total-cost)

(feature-observation-cost ?p))))

The precondition clause specifies that the belief state variable
value for a particular pose and wheel must be at belief level
one in order for this operation to be tried. The effect clause
specifies that the belief level increases to belief-level-two if the
operation succeeds. The cost for the operation is also added
to the total cost. The other sensor actions are specified in the
PDDL domain file in a similar manner.

VII. SENSOR ACTIONS

We now describe in more detail the three sensor actions
introduced previously: SURF Match, SURF Match Other
Wheel, and Hough Ellipse Match.

A. SURF Match

The SURF Match action uses the SURF (Speeded Up
Robust Features) algorithm [10] to attempt to identify wheels
in the target image. SURF is inspired by SIFT (Scale-invariant
Feature Transform), but is several times faster and can also be
more robust against different image transformations. SURF is
based on sums of 2D Haar wavelet responses and makes an
efficient use of integral images.

The SURF Match action uses the SURF algorithm to
attempt to match a wheel in a reference image with a wheel
in the target image. The SURF algorithm is scale invariant,
but is somewhat sensitive to large changes in orientation.
Therefore, multiple reference images are used, including ones
for different orientations. The orientations in the reference
images (see Figure 11) correspond to the orientations of the
discrete belief state variables.

(a)
+2

(b) +1 (c) 0 (d) -1 (e) -2

Figure 11. Wheel reference images, corresponding to different orientations.

The SURF Match action is not highly reliable; it can miss
detecting a wheel, especially if the target image is noisy, it
can falsely detect objects that are not wheels. Also, due to
the symmetry of wheel images, the SURF Match algorithm
does not provide a very accurate estimate of the pose (position
and orientation) of the wheel in the target image. Thus, the
SURF Match action is used to attempt to achieve a rough
initial match, the goal being to move from low to medium
confidence estimates, and set the stage for the use of the other
sensor actions to improve the estimates.

We used the functions detectSURFFeatures, extractFea-
tures, matchFeatures, and estimateGeometricTransform from
the Mathworks Computer Vision System Toolbox [12] to
implement the SURF Match action. Parameters used for these
functions are shown in Tables I, II, and III.
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TABLE I. PARAMETERS FOR detectSURFFeatures

MetricThreshold NumOctaves NumScaleLevels
100 5 5

TABLE II. PARAMETERS FOR matchFeatures

MatchThreshold MaxRatio
30.0 0.7

In our implementation of this sensor action, we used fixed
parameters for these functions, but this could be extended to
allow for adaptively adjusting parameters within the active
perception framework. For example, the MaxDistance pa-
rameter of the estimateGeometricTransformParameters can be
beneficially tuned to improve performance. Besides estimating
the transform, this function removes outlier matches. If the
MaxDistance parameter is too small, it will remove too many
points that are not outliers. Conversely, if the value is too large,
too many outliers remain. We have set the value to 20.0 (up
from its default setting of 1.5), and found this worked well
in the tests we performed. However, there may be conditions
that we haven’t tested under which a lower setting is better.

B. SURF Match Other Wheel

The SURF Match Other Wheel sensor action is similar to
the SURF Match action, but assumes that one wheel position
estimate already exists (from a previous SURF Match action).
It uses this information to try to find the other wheel. This
action uses a number of gists. In this case, the gists come from
previous observations or assumptions, external to the wheel
finder system. In particular, it is assumed that the action is
observing the left side of the car, and that the car is on level
terrain.

The SURF Match Other Wheel action uses the existing
wheel position estimate to crop out that part of the image.
This forces the SURF algorithm to look elsewhere for the
other wheel.

Additionally, if the SURF Match Other Wheel action is
successful in finding the other wheel, then it uses the position
estimates of both wheels to estimate the pose of the overall car.
Note that the position estimates of the wheel resulting from
the SURF algorithm are image position estimates. The sensor
action uses projective geometry, combined with a number of
additional gists, to estimate the positions of each wheel in the
world coordinate frame, given the image position estimates.
These gists are: 1) the height of the camera; 2) the focal length
of the camera; and 3) the size of the wheel. All of these are
reasonable gists; a ground robot or UAV would know the focal
length of its camera, as well as its height. Given previous gists
for vehicle type, the size of the wheel can be determined from
the vehicle type’s spec data.

Once the position estimates of each wheel in the world
coordinate frame are known, simple trigonometry is used to
determine orientation of the car, particularly, its yaw (rotation
about the vertical axis). This estimate is the continuous coun-
terpart to the discrete belief state variables for orientation. The

TABLE III. PARAMETERS FOR estimateGeometricTransform

MaxNumTrials MaxDistance
20000 20.0

continuous and discrete variables inform and reinforce each
other as part of the belief state update mechanism.

C. Hough Ellipse Match

The Hough Ellipse Match sensor action uses Hough trans-
forms [11] to determine wheel position in an image with a high
degree of accuracy. This action is computationally expensive,
but has the potential to give very accurate estimates, when
supplied with good parameters. Thus, this action is used after
the other, less expensive sensor actions have developed a
strong hypothesis about where a wheel might be, and what
it’s orientation is likely to be.

The computational expense of the Hough transform algo-
rithm rises as the number of parameters increases. The varia-
tion of the Hough transform for detecting lines is the cheapest;
it requires only two parameters. The circle variation is more
expensive since a circle is described by three parameters (the x,
y position of the center, and the radius). The ellipse variation
is still more expensive since an ellipse is described by six
parameters. For this reason, the Hough Ellipse Match sensor
action first checks whether estimated orientation (yaw angle)
of the car is small, indicating that the car side is facing the
camera directly. In this case, the sensor action employs the
circle variation of the Hough transform, as a special case of
an ellipse, since the circle variation is faster. Even so, this
algorithm only works well if good bounds can be specified
for the parameters (circle center and radius).

For the more general case, we use an efficient Hough Ellipse
algorithm [15] that requires good bounds for major axis length,
aspect ratio, and rotation angle. This algorithm can take a very
long time (30 minutes or more in some cases, depending on
image size), and is very sensitive to the parameter bounds. In
particular, it can easily incorrectly match non-wheel objects
as ellipses if its search area and parameters are not tightly
constrained. For this reason, we crop the image based on the
current estimated wheel position in the image, to reduce the
area where the algorithm has to search. Additionally, we use
orientation and scale information computed by the other sensor
actions to constrain the major axis, aspect ratio, and rotation
parameters.

VIII. RESULTS

A. Results

In this section, we provide an end-to-end example run
showing adaptation to the sensors as knowledge is learned
from the image.

The a priori belief state is shown in Figure 12. This indicates
that the poses are largely unknown, with a slight bias to the
zero pose.
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(a) Wheel

(b) Car

Figure 12. Wheel and car pose, a priori belief state.

The first control step iteration, based on this belief state,
yields the following plan from the PDDL planner.

1. SURF Match (front-wheel pose-zero)
2. SURF Match Other Wheel (front-wheel pose-zero)
3. Hough Ellipse Match (rear-wheel pose-zero)

The Executive performs the first of these actions, yielding
a successful match, as shown in Figure 13.

Figure 13. Successful SURF match to front wheel.

Based on this, wheel pose estimates are updated as shown in
Figure 14; the hypothesis for zero pose for the front wheel has
been strengthened over the a priori estimate shown in Figure
12.

Figure 14. Wheel pose belief state after initial SURF match.

The second control step iteration, based on this updated
belief state, yields the following plan from the PDDL planner.

1. SURF Match Other Wheel (front-wheel pose-zero)
2. Hough Ellipse Match (rear-wheel pose-zero)

The Executive performs the first of these actions, yielding
a successful match, as shown in Figure 15. Note that the front
wheel has been cropped out to focus the sensing action on the
other (rear) wheel.

Figure 15. Successful SURF match to other (rear) wheel.

Based on this, wheel and car pose estimates are updated
(see Figure 16), the hypotheses for zero pose for the wheels
and car have been strengthened.

The third control step iteration, based on this updated belief
state, yields the following plan from the PDDL planner.

1. Hough Ellipse Match (rear-wheel pose-zero)

The Executive performs the first of these actions, yielding
a successful match, as shown in Figure 17.

The final wheel belief state estimates are shown in Figure
18.
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Figure 16. Car pose belief state, after SURF Match Other Wheel action.

Figure 17. Successful Hough ellipse match to rear wheel (match highlighted
in green).

Figure 18. Final wheel pose belief state.

IX. DISCUSSION

The focus of our efforts thus far has been on the sub-
problem of finding a wheel in an image. This has led to an
emphasis on “look” actions, but no incorporation of “move”
actions (actions that change the state of the environment). As
stated previously, this is only part of the larger problem of
autonomously or semi-autonomously repairing a car tire. We
believe that the approach we have developed is well suited for
extension to the larger problem, and problems like it. In par-
ticular, it is well suited to incorporating move as well as look
actions, with the generative planning component intelligently
combining both types of actions. This would allow for testing

with more general kinds of problems, where the goal is more
than purely a perception goal, but rather, involves changing
the environment state to achieve an environment goal.

X. CONCLUSIONS

We have demonstrated the approach of using a PDDL
planner with receding horzon planning to produce a context
driven feature extraction capability. We are working now to
integrate this capability within a framework that encompasses
real actions that lead to a problem solving activity being per-
formed (changing a tire) and in which many more observation
actions are possible. To handle the increased state space size
we are moving to a monte-carlo planner.

ACKNOWLEDGEMENTS

This research was developed with funding from DARPA.
The views, opinions, and/or findings contained in this article
are those of the authors and should not be interpreted as
representing the official views or policies of the Department
of Defense or the U.S. Government.

REFERENCES

[1] G. Hoelzl, M. Kurz, and A. Ferscha, “Goal processing and semantic
matchmaking in opportunistic activity and context recognition systems,”
in The 9th International Conference on Autonomic and Autonomous
Systems (ICAS2013), March 24 - 29, Lisbon, Portugal, textbfBest Paper
Award, March 2013, pp. 33–39.

[2] ——, “Goal oriented recognition of composed activities for reliable and
adaptable intelligence systems,” Journal of Ambient Intelligence and
Humanized Computing (JAIHC), vol. 5, no. 3, July 2013, pp. 357–368.

[3] M. P. Fourman, “Propositional planning,” in Proceedings of AIPS-00
Workshop on Model-Theoretic Approaches to Planning, 2000, pp. 10–
17.

[4] P. Hebert et al., “Combined shape, appearance and silhouette for simul-
taneous manipulator and object tracking,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on. IEEE, 2012, pp.
2405–2412.

[5] N. Bilton, “Behind the google goggles, virtual reality,” New York Times,
vol. 22, 2012.

[6] G. E. Monahan, “State of the arta survey of partially observable markov
decision processes: Theory, models, and algorithms,” Management Sci-
ence, vol. 28, no. 1, 1982, pp. 1–16.

[7] N. L. Zhang and W. Zhang, “Speeding up the convergence of value
iteration in partially observable markov decision processes,” arXiv
preprint arXiv:1106.0251, 2011.
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