
Adaptive System Framework
A Way to a Simple Development of Adaptive Hypermedia Systems

Balı́k Martin and Jelı́nek Ivan
Department of Computer Science and Engineering

Faculty of Electrical Engineering, Czech Technical University
Prague, Czech Republic

e-mail: {balikm1, jelinek}@fel.cvut.cz

Abstract—Adaptive hypermedia systems (AHS) are complex
systems that require an expensive and time-consuming design
and development process. Complex solutions are usually realized
as reusable frameworks and program libraries. However, there
is currently no widely acceptable solution for building AHS.
Based on our research, we are developing a framework that
could significantly make the design and development of AHS
easier. First, we formalized the adaptive system architecture,
and then, we defined basic structures for storing required data.
Further, we designed the adaptation and integration modules
and developed reusable adaptive web user interface components.
Such a framework is considered to become a foundation stone
for various types of AHS.

Keywords—adaptive hypermedia; personalisation; framework;
software development

I. INTRODUCTION

The purpose of adaptive hypermedia systems (AHS) is
to adapt content, presentation and navigation of hypermedia
to satisfy user’s needs and preferences. The fundamental
principle of AHS is to observe user’s behavior, to build a user
model reflecting all user’s characteristics, e.g., knowledge,
preferences, or event history, and to customize the pages
presented to the user based on these characteristics. The aim
of our research is to provide a reference model of AHS and
its implementation that would contribute to the facilitation
of an AHS development process.

The Generic Ontological Model for Adaptive Web En-
vironments (GOMAWE) [1] forms a theoretical basis for
an application framework that should rapidly simplify and
speed up the AHS development. This is achieved by reusable
ready-to-use software components provided by the framework
implementation and extensibility of the framework for further
use cases and novel technologies.

The Adaptive System Framework (ASF) was built to help
a software developer create adaptive web applications. ASF
provides the most typical AHS components serving as building
blocks for further development. ASF is based on the theoretical
model and satisfies the following important requirements. To
be generally applicable, the framework has to be split into com-
ponents with independent responsibilities. To follow generally
accepted solutions to common application problems, design
patterns [2] should be extensively used. The implementation
of the framework should be based on well-known and widely
used application frameworks. In contrast to other frameworks
focusing on the users’ collaboration [3] or adaptation process

modeling [4], our framework aims at formalization of adap-
tive system architecture. Further, it focuses on targeting the
problem of a storage layer abstraction, foundations of the data
structures needed for a user modeling and providing a basic
set of adaptation-oriented user interface components.

The paper is structured as follows. Section 1 deals with the
description of AHS and the tasks to solve. In Section 2, a cur-
rent state of the art of the discussed topic is being reviewed. In
Section 3, an ASF framework is described in detail focusing on
individual layers. In Section 4, both an evaluation method and
application of the framework in a prototype implementation is
discussed. Finally, the paper concludes by summarizing results
of the research and indicates the directions of the future work;
see Section 5.

II. RELATED RESEARCH

Hypermedia adaptation has become a topic of a re-
searchers’ interest for almost 15 years. The researchers have
been trying to formalize an adaptive system architecture,
behavior and to line up with the existing web development
standards. Since self-adaptive systems are complex, they re-
quire a special approach in the process of designing and
developing such projects.

In the early stage of the AHS research, the model AHAM
with its implementation AHA! [5] was the first widely used
architecture of the adaptive systems. The AHAM domain
model can be represented by single ontology, since it deals
with the concepts and their mutual relations. However, it was
not designed to deal with multiple ontologies. The AHA!
system is built on the basis of outdated technologies, and
the web user interface is not in compliance with modern
web standards. Therefore, we offer the improvements which
lie in building a novel framework based on up-to-date web
technologies.

In the following text, we present a layout of already
existing adaptation frameworks and libraries.

GRAPPLE (Generic Responsive Adaptive Personalized
Learning Environment) [6] has been developed at the Eind-
hoven University of Technology, as a part of the FP7
project [7]. This system is focused on adaptive learning. It is
integrated with existing learning systems (e.g., Blackboard [8]
or Moodle [9]). The most important contribution of this
project lies in integrating the adaptive delivery of the teaching
materials for the course into a supported learning process.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

RDF
Reactor

JPA

Hibernate
Hibernate Empire

DB Triple
store

...
RDF2GO

Jena / Sesame

Storage layer implementationAlgorithms
implementation

UI implementation

Storage interfaceReasoning interfaceUI interface

JSF

Primefaces

...

Adaptive UI controls
extensions BO exceptionsHelper classesSpring framework

User

Figure 1. Adaptive system framework architecture

Another project, specifically focused on adaptive learning,
is the Adaptive eLearning Platform [10]. This system is the
implementation of the Virtual Apparatus Framework, a content
development paradigm modeled after the process of developing
a teaching lab activity. The approach used in this project is
tightly connected to the learning process and is based more on
pedagogical principles than on software engineering.

A further promising project is also HyperAdapt [11]. In
this project, a specialized approach utilizing an aspect-oriented
programming is used. The authors place the adaptivity into
separate modules called adaptation aspects. The aspects are
not applied on a model level, but on XML documents.

One of the solutions intended to extend legacy web
applications with adaptive behavior is the Adaptive Server
Framework [12]. Compared to our solution, this project is
focused on server-side components only. The design principle
is to separate the implementation of adaptive behavior from the
server application business logic. The coupling of components
is ensured by a message-based communication.

A similar solution is the Rainbow project [13]. This project
uses an architecture-based approach. The system adaptation
is predefined by the architecture style of the system. The
commonly used design principle is the principle of a modular
architecture.

Another solution partially inspiring our design of
GOMAWE is the MUSE semantic framework [14]. The frame-
work is built on multidimensional ontological planes. The
intersection between the planes allows the representation of
semantic rules. A similar principle is used in GOMAWE,
where a multidimensional matrix of rules is used to infer the
information not explicitly stored in the user model.

In comparison with other solutions, our ASF project aims
at supporting not only adaptive learning, but also adaptive
hypermedia systems in general. The purpose of our project is
to provide a reusable solution that could be used by the devel-
opers of adaptive applications. We formally described adaptive
hypermedia within the GOMAWE model and designed the

framework that will be described in detail in the following
sections. The Adaptive System Framework is a solution for
a simpler and rapid development of AHS.

III. FRAMEWORK ARCHITECTURE

The ASF architecture is generic. It defines an interface
of various layers of the potential system, and therefore its
implementation can be realized in multiple programming lan-
guages. Fig. 1 represents the description of ASF architecture
based on our GOMAWE model. The ASF architecture consists
of the layers replacing the GOMAWE Storage, Reasoning
and UI interface layers. The main highlighted components
of the core framework library define the fundamentals of
the architecture. The default implementation is built on the
selected persistence frameworks supporting relational database
and triple stores. In our experiments the storage layer was
based on various frameworks, e.g., JPA, Hibernate, Empire, or
RDF Reactor. However, our framework can be extended by any
other implementation of the storage interface. The extensions
are indicated by the ‘. . . ’ symbol in the diagram; see Fig. 1.
The same situation is in case of algorithms performing the
adaptation above the storage layer. Some algorithms are part
of the framework, others can be added by the developer as an
implementation of the reasoning interface.

The user interface is based on Java Server Faces (JSF)
and is supported by a Primefaces components suite [15]. Our
goal is to extend basic web components by the adaptation-
specific extensions; see Fig. 1. We think that there are several
adaptation techniques that the framework can provide “out
of the box” allowing the developers to apply the adaptation
without any need of additional work.

A. Data storage

One of the most important parts of every adaptive system is
the user model. This is the repository, where information about
the user is stored. This information is used in the adaptation
process to filter information and personalize the presentation
according to the user’s preferences.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

«interface»

T : Object

IAdaptationAlgorithm

adapt(T) :T

«interface»

T : IContentObject

IContentAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(T) :T

«interface»

T : ILink<?>

ILinkAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(T) :T

«interface»

T : Collection<? extends ILink<?>>

ILinkGroupAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(T) :T

Figure 2. Adaptation algorithms classification

We divided the user data into two parts – the user profile
and user model. The user profile contains explicit user’s prefer-
ences. This data is corresponding to the “settings page” and is
stored as key-value pairs. The key is usually a constant string
defined by the developer of the application. The user model, on
the other hand, stores the data observed while the application
monitors the user. The information is always associated with a
domain object and represents the user’s relation to the object,
e.g, user’s knowledge of the topic, user’s preferences, or their
past experience. The user model corresponds to the overlay
over the application domain model.

The access to the user model and user’s profile is sup-
ported by an adaptation manager. The adaptation manager
implementation is based both on the Singleton Design Pattern
providing a manager instance and the Factory Method Design
Pattern used for creating domain-specific model instances for
an individual user.

In our design, the user model has a special architecture.
Each attribute is assigned to one dimension. Dimensions can
be custom-defined for each adaptive system. The dimension
forms a group of related attributes. It can be visualized as
a multidimensional matrix.

The multidimensional user model is formally described as
follows:

Definition 1 (Multidimensional User Model). The Multidi-
mensional User Model is a tuple MUM = (D,A, V)

r : A→ V |∀a ∈ A : r(a) ∈ Va ∧ r(a) ∈ D, (1)

where D is a finite set of dimensions, A is a finite set of
attributes, each associated with a particular dimension, V is a
set of attribute values and Va is the domain of attribute a.

Another important part of the adaptive system storage is the
rule repository. The rules can represent conditions defined by
the author of the content of the application, e.g., by a teacher
who prepares an adaptive course, or they can be generated
by specialized adaptation algorithms. The rules assume that
the user-model characteristics are associated with predefined
dimensions. The dimensions can be used to filter the rules
while the rules are being evaluated. This contributes to better
performance and helps the designer of an adaptive algorithm
to maintain the rules easier.

Both the domain and the user model can be represented
by simple concepts and their relations. However, our solution
was designed to use multiple lightweight ontologies. The use
of ontologies was motivated by the requirements of the data
semantics, data exchange and integration among applications,
and as well, by the need to infer the information implicitly
stored in the user model.

The adaptive process is executed above the storage layer
and acts as a mediator between the raw data and the user.

B. Adaptive behavior

One of the goals of the framework optimization is to
make components of an adaptive system reusable and generally
applicable. To achieve this requirement, we defined a general
interface over any algorithm that will be used to perform the
adaptation (Fig. 2).

The adaptation algorithms are further divided according to
the “adaptation techniques taxonomy” (Fig. 3). A simplified
version of the taxonomy is based on the taxonomy defined
in [16]. Less important techniques currently not implemented
by the framework were excluded from the original taxonomy.
A content adaptation, link adaptation and link-group adaptation
algorithms are specified in the framework.

Content
Adaptation
Techniques

Adaptive
Presentation
Techniques

Adaptive
Navigation
Techniques

Inserting/removing
fragments

Altering
fragments

Link Sorting/
Ordering

Link Annotation

Link Generation

Link Hiding

. . .

. . .

Figure 3. Simplified adaptation techniques taxonomy

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

A content adaptation algorithm is an algorithm which is
used to transparently transform the content of the domain
concepts based on the user model. It can be used to substitute
the elements of the domain concepts. For example, we can
recognize various extents based on the user’s knowledge
stereotypes (beginner, advanced, expert).

A link adaptation algorithm is intended for customizing
a single link. On the other hand, the link-group adaptation
algorithm assumes a collection of the links to serve as both
input and result. The links can be adapted by sorting. The
input collection is processed, and the order of the links is
modified. A different approach is used for a link generation. In
this case, the result is not dependent on the adaptation function
input, since the data is retrieved from a repository. Other link
adaptation strategies include a direct guidance, link annotation
or adaptive link hiding.

There are two main types of the link adaptation algorithms
in the framework:

• adaptation based on the current context, where the
existing links can be sorted, filtered, etc.

• link generation, where the algorithm is responsible
only for retrieving the input data. A default value can
be provided to the adaptation function. It can be used
in case when the user disables the adaptation, or if
there is not sufficient input data to generate the links
automatically.

In GOMAWE, the adaptation was designed as an
extendable set of black box components that perform the
adaptation based on the information stored in the user model.
A framework implementation (Fig. 4) is realized as a Strategy
Design Pattern [2]. The intent of the Strategy Design Pattern
is, first, to define a family of algorithms, second, encapsulate
each of them, and third, make them interchangeable. It enables
the algorithm to vary independently of the clients that use it.

We can define an elementary adaptation as an adaptation
function.

Definition 2 (Adaptation Function). An Adaptation Function
AF is a transformation between default and adapted hyperme-

IAdaptationAlgorithm

«interface»

T : Collection<? extends ILink<?>>

ILinkGroupAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(object :T) :T

T : ILink<S>
S : IPersistable<?> & IRateable

SimilarByContentLinkAdaptationAlgorithm

adapt(linkList :Collection<T>) :Collection<T>
SimilarByContentLinkAdaptationAlgorithm(centroidObject :S)

T : IPersistable<?>

SimilarByUserWalkLinkGenerationAlgorithm

adapt(defaultLinkList :Collection<? extends ILink<T>>) :Collection<? extends ILink<T>>
SimilarByUserWalkLinkGenerationAlgorithm(walkRepository :IUserWalkDAO<? extends IUserWalk<T>>, currentUser :IUser)

LinkGroupComponent

generateContent() :void

ILinkGroupAdaptationAlgorithm.adapt()

< T->Collection<? extends ILink<T>> >

< T->Collection<T> >

Figure 4. Link-group adaptation algorithms

«abstract»

T : Object

AdaptationCondition

name :String
operator :Operator
value :String

T : Object

CompositeAdaptationCondition

connective :Connective

evaluate(valueObject :T) :boolean

«interface»

T : Object

IAdaptationCondition

evaluate(valueObject :T) :boolean

UserModelAdaptationCondition

userModel :UserModel

evaluate(domainModelInstance :IPersistable<?>) :boolean
UserModelAdaptationCondition(userModel :UserModel, attributeName :String, unaryOperator :Operator)
UserModelAdaptationCondition(userModel :UserModel, attributeName :String, binaryOperator :Operator, value :String)

forall c in conditions
c.evaluate()

0..*

conditions

1

< T->IPersistable<?> >

Figure 5. Condition class hierarchy

dia elements. A hypermedia element is considered as a portion
of HTML code that is a part of the web page.

AF : ed → ea, (2)

where ed is the default element, and ea is the adapted element.

A generic group adaptation function usually takes a col-
lection of default or initial values as an input, and returns an
adapted collection of items of the same type. The particular
algorithm is encapsulated inside the black box which is im-
plemented as a class. Algorithm instances can be optionally
parametrized before the actual adaptation is performed.

Another extension of the adaptation component will lie in
the meta-adaptation support, where best-suited algorithms will
be adaptively selected. For this purpose, the Strategy Design
Pattern will be extended to the Adaptive Strategy Design
Pattern [17]. The Adaptive Strategy Design Pattern defines a
self-adaptive strategy. A single strategy referencing the best
available concrete strategy is exposed to the client and the
client is required only to provide an access to the environment
information that can be used to choose the best strategy.

The data filtering in the user model is based on the
conditions (Fig. 5). Condition classes follow the Composite
Design Pattern [2]. The task of the Composite Design Pattern
is to compose objects into tree-like structures to represent
part-whole hierarchies. The Composite allows clients to treat
individual objects and the compositions of objects uniformly.
The conditions have multiple applications in the framework.
The same hierarchy is used for evaluating the rules. The pur-
pose of the condition is determined by a particular implemen-
tation of the abstract AdaptationCondition class.

The rules are defined on the intersections of the user model
dimensions. The dimensions are used to limit the information
space and to contribute to better evaluation performance. There
are two ways of creating the rules in the data storage. The rules
can be defined directly by the content designer, or they can be
a product of an adaptation algorithm. The combination of these
techniques can lead to interesting adaptive behavior. This will
be the objective of our future research.

In the following sub-section, we will show an example of
an adaptation algorithm that can be integrated into the system.

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

document← currentWalk.get(currentWalk.size−1)
for all userWalk in walks do

newIndex← currentWalk.getPosition(document)
oldIndex ← userWalk.getPosition(document)
{compare a similarity of documents preceding the
current one in the current and a stored walk}
while newIndex ≥ 0 ∧ oldIndex ≥ 0 do

if currentWalkDoc 6= userWalkDoc then
break

else
increment quality and decrement indexes

end if
end while
if quality > 0 then

put into document-quality map
end if

end for
sort document quality map by document quality
return set of documents sorted by quality

Figure 6. Algorithm: Get possible subsequent documents by comparing
the history of the user walk transitions

Example (Walking the document space).
To clerify a link adaptation, we will show how the adaptive link
generation based on the similarity of navigating paths within
the document space is supported by the framework.

Let us have a finite set D of the documents d. A document
walk is an ordered set W , where W ⊆ P . The document walk
is always associated with the user and represents a navigation
sequence of the user throughout the document set in a single
session. Finding a similar sequence allows us to predict the
next most suitable document for a current user based on other
users’ behavior (Fig. 6).

The desired algorithm is classified as a link-group adapta-
tion algorithm based on ASF (Fig. 2). In our case, it is a link
generation algorithm.

Fig. 7 presents a sequence diagram describing typical steps
of the adaptation algorithm sequencing. In our specific case,

the user walk algorithm, first, requests the default values from
the user model (in case of a link generation, this step is
not required), and, second, it loads other user walks from
the repository. Based on this data, a set of recommended
subsequent documents is returned to the content generator.

C. User interface

The most user-oriented layer of the framework comprises
the user interface components that are customized for the web-
page adaptation. The components are based on the JSF
and the Primefaces component suite. The components utilize
JavaScript and AJAX to provide rich user experience.
An added value to the commonly used web components is
the tight coupling with adaptive behavior, user model and the
adaptation engine.

An adaptive text output can be taken as an example of
a simple component. In a common web component framework,
we can find a text output component generating a text to the
web page. The text content selection or customization must be
done by the developer. In our framework, we want to provide
intelligent web components tightly bound with the adaptation
engine. The adaptive text component is able to provide various
content adaptation techniques. The functionality of the compo-
nent should be based on the configuration, selected algorithm
and on the provided data storage for the data binding. Any of
these parameters can be changed later, without any significant
modifications to the web page logic and code.

IV. PROTOTYPE VALIDATION

The Adaptive System Framework was applied in the de-
velopment of a learning course. We chose an adaptive learning
environment since the adaptation is very often applied in this
area. The university environment provides many opportunities
to evaluate such an application in the courses and seminars.
Our adaptive learning application was used in a C language
programming course.

The implementation of the storage layer was based
on JPA API and Hibernate implementation. MySQL Server
database was used as a data storage. The choice of the

Client

Content template Adaptation
algorithm

User model Repository

View page()

request adapted links()

request user data()

data()

request data()

data()

link collection()

page content()

Figure 7. Adaptation algorithm usage

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

storage limited some benefits of the framework. However, as
a prototype, it was sufficient enough to validate the frame-
work architecture. At present, we are working on the future
extensions of the adaptive application, where the ontologies
representing an important feature of our design will be used.
In the next version of the learning course, the data will be saved
in a triple store and the integration features will be evaluated.

The centralized user model management is beneficial for
the application development. Using the adaptation manager,
the user profile and user model properties can be accessed
from any component of the application.

The design of the application core based on the ASF
framework consists of the following important steps:

1) Definition of the domain objects – in case of the
learning application called learning objects and their
relations

2) Definition of the user profile and user model attributes
3) Design of the adaptive algorithms for the desired

behavior
4) Configuration of data sources
5) Binding the data results either to the application logic

or directly to the adaptive UI components

The application was tested by 35 students, and the con-
tent was limited to one topic of one week of the semester.
From the results of the log analysis, we could get interesting
observations regarding the feedback from the students. In
this phase, the feedback was limited to a preference screen
only. While using an online course, 5 students (14%) tried
to change the adaptation setting and 5 of them tried to reset
the result statistics. More students were interested in personal
settings, particularly, the visual theme of the application.
12 students (34%) changed the visual theme. From these
results, we can conclude that a default setting of the adaptation
is very important and that the adaptation based on automatic
observations of the users should be extensively applied. An
explicit feedback can be expected after the users become more
friendly with the system and start customizing the system to
be more comfortable to use.

V. CONCLUSIONS AND FUTURE WORK

The Adaptive System Framework can be regarded as
a possible solution to an effective development of adaptive
hypermedia systems. The proposed framework defines funda-
mental components and is based on a formal model. It provides
various possibilities of its implementations and their further
extensions. It leads to a simplified process of the development
and, at the same time, it does not limit the developer in
customized extensions. The default framework implementation
is based on both modern frameworks used for the development
of the web applications and state-of-the-art technologies of the
Semantic Web.

We have verified the framework by implementing a pro-
totype of e-learning web application. In the future, we would
like to extend the framework with more reusable adaptable JSF
components based on the well-known adaptation techniques.
Extending a set of implemented algorithms will enable use new
methods of the personalization. The results will be thoroughly
verified by the application of an adaptive web-based learning
in real-class scenarios.

ACKNOWLEDGMENT

The results of our research form a part of the scientific
work of a special research group WEBING [18]. The work
was supported by the grant of the Grant Agency of the Czech
Technical University in Prague.

REFERENCES

[1] M. Balı́k and I. Jelı́nek, “Towards Semantic Web-based Adaptive
Hypermedia Model,” in ESWC Ph.D. Symposium, Tenerife, Spain,
2008, pp. 1–5.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., 1995.

[3] M. Šimko, M. Barla, and M. Bieliková, “ALEF : A Framework for
Adaptive Web-Based Learning 2.0,” Ifip International Federation For
Information Processing, vol. 324, 2010, pp. 367–378.

[4] E. Knutov, P. De Bra, and M. Pechenizkiy, “Generic Adaptation Frame-
work: A Process-Oriented Perspective,” Journal Of Digital Information,
vol. 12, no. 1, 2011.

[5] H. Wu, E. de Kort, and P. De Bra, “Design issues for general-purpose
adaptive hypermedia systems,” in Proceedings of the twelfth ACM
conference on Hypertext and Hypermedia - HYPERTEXT ’01. New
York, New York, USA: ACM Press, 2001, pp. 141–150.

[6] P. De Bra, D. Smits, K. V. D. Sluijs, A. I. Cristea, and M. Hendrix,
“GRAPPLE: Personalization and adaptation in learning management
systems,” in Proceedings of World Conference on Educational Multime-
dia, Hypermedia and Telecommunications (ED-MEDIA 2010), Toronto,
Canada, 2010, pp. 3029–3038.

[7] GRAPPLE Project Website. [Accessed: Apr. 24, 2013]. [Online].
Available: http://www.grapple-project.org/

[8] Blackboard Learning System Website. [Accessed: May 6, 2013].
[Online]. Available: http://www.blackboard.com/

[9] Moodle Learning System Website. [Accessed: May 6, 2013]. [Online].
Available: https://moodle.org/

[10] D. Ben-Naim, “A Software Architecture that Promotes Pedagogical
Ownership in Intelligent Tutoring Systems,” Ph.D. dissertation, Uni-
versity of New South Wales, Sydney, Australia, 2010.

[11] M. Niederhausen, S. Karol, U. Aß mann, and K. Meiß ner, “Hyper-
Adapt: Enabling Aspects for XML,” in Web Engineering, 9th Interna-
tional Conference, ICWE 2009, ser. Lecture Notes in Computer Science,
M. Gaedke, M. Grossniklaus, and O. Dı́az, Eds. San Sebastián:
Springer, 2009, pp. 461–464.

[12] I. Gorton, Y. Liu, and N. Trivedi, “An extensible and lightweight
architecture for adaptive server,” Softw., Pract. Exper., vol. 38, no. 8,
2008, pp. 853–883.

[13] S. Cheng, “Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh,
2008.

[14] F. Carmagnola, F. Cena, C. Gena, and I. Torre, “MUSE: A Multidi-
mensional Semantic Environment for Adaptive Hypermedia Systems,”
in Proceedings of Lernen, Wissensentdeckung und Adaptivität (LWA),
M. Bauer, B. Brandherm, J. Fürnkranz, G. Grieser, A. Hotho, A. Jedl-
itschka, and A. Kröner, Eds. Saarbrücken, Germany: DFKI, 2005, pp.
14–19.

[15] PrimeFaces Component Suite. [Accessed: Jan. 31, 2013]. [Online].
Available: http://primefaces.org

[16] E. Knutov, P. De Bra, and M. Pechenizkiy, “AH 12 years later: a
comprehensive survey of adaptive hypermedia methods and techniques,”
New Review of Hypermedia and Multimedia, vol. 15, no. 1, Apr. 2009,
pp. 5–38.

[17] O. Aubert and A. Beugnard, “Adaptive Strategy Design Pattern,”
in Proceedings of The Second Asian Pacific Pattern Languages of
Programming Conference (KoalaPLoP 2001), The Country Place, Mel-
bourne, 2001, pp. 1–12.

[18] Webing Research Group Website. [Accessed: May 6, 2013]. [Online].
Available: http://webing.felk.cvut.cz

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

