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Abstract—In this work we present an evolving system of
agents which interact with each other in game theoretic
settings. The parameters of the game are considered as
time dependent variables representing state of the external
environment. The variation of these parameters covers four
canonical examples from game theory: prisoners dilemma,
hawk-dove, stag-hunt and harmony game. The process of self-
adaptation of the proposed system as well as its adaptation
to the changing parameters of the environment is considered.
We have demonstrated that the introduced system can be in
different states which determine the way the system adapts to
the external conditions. Stability of these states with respect
to the variation of the external conditions has been studied.
An ability of the system to accumulate memory about its past
experience has been reported.

Keywords-complex adaptive systems; game theory; evolution-
ary game theory; Turing machines

I. INTRODUCTION

A complex adaptive system (CAS) is a collection of au-
tonomous, heterogeneous agents, whose behavior is defined
by a limited number of rules [1]. In this work we consider a
special class of CAS in which agents have a fixed and limited
number of actions available to them and outcomes of every
pairwise interaction between agents depend on the actions
chosen by the two agents participating in the interaction.
In more detail, in every pairwise interaction every agent
receives a payoff which depends on the actions chosen by
the considered agent as well as on the action chosen by
another agent involved in the interaction. The mathematical
constructs of this kind are typically studied within game
theory. However, when the number of agents becomes large,
the system starts to exhibit complex and interesting emergent
properties which are hard to derive from the underlying
simple game theoretic rules of the interactions between the
agents and, as a consequence, methods of CAS can be better
suited for study of collective properties of the system.

The complexity of the system is conditioned by large
number of heterogeneous agents. The behavior of the system
as a whole is hard to derive from individual properties of
agents and rules of the underlying game. In this framework
the payoffs of the game can be considered as parameters of
the environment into which the system of interacting agents

A1 A2

A1 w,w x, y
A2 y, x z, z

Table I
PAYOFF MATRIX OF A SYMMETRIC GAME

is embedded. If we supply such a system with a selection
mechanism, such that the agents with the largest fitness
survive, the populations of the agents of different types
will depend on parameters of the game (environment). This
property makes the system adaptive. Moreover, the fitness
of a given agent in the system depends not only on the
parameters of the game but also on the proportion of agents
of different types. This makes the system self-adaptive.

In this work we consider a simple game in which every
agent has only two actions available. Moreover, we consider
symmetric games in which payoffs of two interacting agents
depend on their actions and actions of their opponents in the
same way. The payoffs in a symmetric game are given by the
payoff matrix shown in Table I. The rows and columns of
the table correspond to the two actions available to the first
and the second agents, respectively. The first and the second
number in the cells are payoffs of the first and second agents,
respectively. We do not change the logic of a game if we
multiply all the payoffs by the same positive number. The
logic of the game is also invariant with respect to a constant
shift of all payoffs. We also can change the numeration of
the actions. Using these three properties we can always set
w = 0 and z = 1. As a consequence we need only two
parameters (x and y) to completely specify the game.

Changing x and y we will get different games. Four qual-
itatively different games can be identified. If x ∈ (1.0, 2.0)
and y ∈ (0.0, 1.0) we have a game which is known in
biology and evolutionary game theory as hawk-dove game.
In political science and economics the games is more known
as chicken game. The earliest presentation of a form of the
hawk-dove game was by John Maynard Smith and George
Price in their 1973 Nature paper, ”The logic of animal
conflict” [2]. In biology this game formalizes a situation
in which there is a competition for a shared resource and
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Figure 1. For regions corresponding to four different games

the contestants can choose either conciliation or conflict.
Sometimes this game is also referred to as snowdrift game.
In game theory this game is known as a canonical model of
conflicts between two players and has been the subject of
extensive research [3]. The hawk-dove game was also used
to compare approaches of CAS and game theory to analysis
of systems of interacting agents [1].

If x ∈ (1.0, 2.0) and y ∈ (−1.0, 0.0) we get the prisoners
dilemma game [4], [5] which is known a canonical tool to
study cooperative behavior in game theory, politics, eco-
nomics, sociology and evolutionary biology. Many natural
processes have been abstracted into models in which living
beings are engaged in repeated games of prisoner’s dilemma.
In this game agents need to make a choice between two
actions which are called ”cooperation” and ”defection”. The
main idea behind the prisoner’s dilemma game is that the
defection is always more beneficial than the cooperation,
independently on what strategy is chosen by the opponent.
On the other hand, the mutual cooperation of the agents is
more beneficial to both players than the mutual defection.
Because of these two properties the game faces players
with a dilemma between the cooperation and defection.
The iterated prisoner’s dilemma has been considered as a
part of a model that explains how cooperation can arise
in the nature as a result of evolution [6]. The tit-for-tat
strategy has been reported as the best deterministic strategy
for the iterated prisoner dilemma [7] demonstrating that the
prisoner’s dilemma can be used to explain reciprocity.

If x ∈ (0.0, 1.0) and y ∈ (−1.0, 0.0) we get the stag-
hunt game which describes a conflict between safety and
social cooperation [8]. This game is also known as ”as-
surance game”, ”coordination game”, and ”trust dilemma”.
Several animal behaviors have been described as stag-hunts
including coordination of slime molds and hunting practices
of orcas.

If x ∈ (0.0, 1.0) and y ∈ (0.0, 1.0) we get the harmony

game. This game is trivial since it does not induce any
dilemma. It is included into consideration for the complete-
ness of the classification.

In the introduced games the agents always have two
choices. These choices can be called as cooperation and
defection. By definition the mutual cooperation is always
more beneficial than the mutual defection.

II. METHODS

Additionally to the payoff matrix we need to specify a
schema of interaction between agents. There are different
ways to organize the interaction between agents. For exam-
ple, in the so called proposer-responder settings, the first
agent, called proposers chooses one of the two actions. The
second player, called responder, can see the choice of the
proposer and based on that it makes its own choice. After
that the choices of the two agents are combined to calculate
the payoffs that have to be allocated to the two agents. In our
model we take an alternative approach which treats agents
in a symmetric way. The two agents make their choices
simultaneously. After that their choices are reviled to each
other and are used to allocate the payoffs to the agents.

Another important component of the interaction schema
is the number of games. If any two agent play with each
other only once we have the case of a single stage game
or single shot game. Alternatively we could have a case of
repeated games. The repeated games can be broadly divided
into two classes: finitely and infinitely repeated games. In
the case of the finitely repeated games the agents interact
with each other a fixed and know number of times. In case
of the infinitely repeated games the number of interactions
is not fixed. There is a non zero probability, usually fixed
and constant, that after the given interaction there will be
another interaction. The repeated settings of the game have
been shown to be one of the possible mechanisms that can
stimulate emergence of cooperative behavior as a result of
evolution [9], [10]. In our model we use the settings of the
infinitely repeated games. The probability for the next game
to happen was set to 0.5.

Additionally to the payoff matrix and the interaction
schema we need to specify how agents are paired to interact
with each other. One of the options is to assign special
location to every agent and let the agent to interact with
its neighbors. In this case we get the case of spatial games
[11]. The effect of space can have a strong effect on the
dynamics of the evolution. In particular agents of certain
class can be more successful than other agents because of
the fact that they can form spatial clusters in which they
mostly interact with the agents of the same kind. This kind
of effects supplements the selection of agents by selection of
groups of agents and can promote cooperative behavior. In
our model we do not consider effects of the spatial locations
to focus more on dynamics of relative proportion of different
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types of agent in the population, which exhibits a complex
and interesting behavior worth of separate consideration.

The payoff of an agent depends on what agents were
involved into the interactions with the given agent as well as
how many games were played with every opponent. In other
words the fitness of a given agent is a stochastic property. In
the presented model we calculate the average fitness of every
agent in the given population of the agents. This assumes
that every agent lives long enough to have many rounds of
interactions with any other agent. In mathematical terms the
fitness of agent i is given by the following equation.

fi =

n∑
j=1

νj

∞∑
k=1

µk · pi,j (k) , (1)

where the first summation is over all kinds of agents in the
population, νj is the portion of agents j in the population.
The second sum is over the number of interaction in a single
round of interactions between the agents i and j. The µk is
the probability that there will be k interactions in one round
of interactions and pi,j (k) is the payoff of agent i while
interacting with agent j in k games.

To start the evolution of the system we need to specify
initial relative fractions of agents of different kinds. After
that we calculate the average fitness of agents of different
kinds using the above given equation (1). Different kinds of
agents have different fitness depending on the parameters of
the environment (payoff matrix of the game) and portions
of the agents of other types. In other words the agents of
the same kind can have different fitness in the same game
depending on the frequencies of agents of other kind in the
population. In this sense the evolutionary process makes the
system of agents not only adaptive to the external conditions
but also self-adaptive.

On every step of the evolutionary dynamics we calculate
average payoff for all kinds of agents in the population.
These payoffs determine the changes of the relative propor-
tions of the agents. The proportion of those agents which
get a high payoff increases while the proportion of the low-
payoff agents decreases. The standard equation giving the
changes of the proportions of the agents of different types as
a function of their payoffs and proportions of agents of other
types is called replicator equation and has the following
form:

dνi
dt

= νi · [fi (ν1, . . . , νn)− f (ν1, . . . , νn)] , (2)

where f is the average payoff in the population:

f (ν1, . . . , νn) =

n∑
i=1

νi · fi (ν1, . . . , νn) (3)

According to this equation the proportion of agents whose
payoff is larger than the average one will increase. The

growth of a population of agents of a given type is pro-
portional not only on the relative payoff of these agents but
also to the current relative size of their population.

The average payoff of the agents grows with the prob-
ability of next game in the repeated games settings since
the average number of games increases. As a consequence
the system will evolve faster if average number of games is
larger. To make the average speed of evolution insensitive
to the probability of next game we have used a modified
version of the replicator equation:

dνi
dt

= sνi ·
fi (ν1, . . . , νn)

max (f1, . . . , fn)−min (f1, . . . , fn)
(4)

According to the modified version of the replicator equation
the growth of a subpopulation of agents of a given type
depends on the position of their average payoff relative to
the maximal and minimal payoffs in the whole population.
In front of the right part of the equation we have added a
parameter s which can be considered as a time step for the
numerical simulation of the evolution. It can be set to a value
smaller than 1 to make evolution slower and smoother. In
our calculations we use s = 0.4.

III. RESULTS

A. Evolution with Two Types of Agents

In case of a population consisting of only two types of
agents, four qualitatively different kinds of evolutions are
possible depending on how payoffs of the agents depend
on the portions of the two subpopulations in the whole
population. If the average payoff of agent i while interacting
with agent j is pij then payoff of the agent i in the
population is equal to:

pi = ν · pi1 + (1− ν) · pi2, (5)

where i can be 1 or 2 and ν is the proportion of the first
agent in the population. In the Figure 2 we have shown four
qualitatively different relations between the payoffs of the
agents of the first and second type. In the case of divergence
(left top tab) agents of a given type have larger payoffs
if their portion is large enough. In this case their portion
increases and the agents of another type are completely
eliminated from the system. In the case of convergence
(right top tab) the agents of a given type have larger payoff
than those of the agents of another type if their portion is
small enough. As a consequence the portion of those agents
which have a larger payoff increases until the convergence
points at which both agents get the same payoffs. At this
point agents of two types coexist. Another case is absolute
domination. This situation happens when one of the two
types of agents has larger payoff than another type agents
independently on the portion of the agents in the populations.
On the left bottom tab we have a case in which agents of
the first type absolutely dominate the agents of the second
type. In this case the agents of the second type always
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Figure 2. Schematic representation of four possible scenarios of evolution
for a system consisting of two kinds of agents. The x-axis is the portion of
the agents of the first kind in the population. The red solid and black dashed
lines are payoffs of the agents of the first and second kind, respectively.

became extinct. Finally we can have a case when two agents
always have the same payoff (see the right bottom tab). In
this case the proportions of agents either do not change or
exhibit a random walk (depending on the model used for
the evolutionary process).

In the prisoners dilemma game defective strategy always
dominates the cooperative one since defection is always
more beneficial independently on the strategy chosen by
the opponent. In contrast, in the harmony game cooperation
always dominates defection because the cooperation is more
beneficial choice independently on the choice of the oppo-
nent. In the hawk-dove game it is beneficial to choose the
action which differs from the action chosen by the opponent.
This leads to the convergence case. It is more beneficial to
be a hawk in a population in which the doves are in the vast
majority. If the vast majority of population is hawks, it is
more beneficial to be a dove. In the case of the stag-hunt
game we have the divergence case. If agents of a certain type
are in vast majority, the portion of the agents of another type
will decrease and they will become extinct.

B. Evolution with Eight 1-State Agents

We have considered agents which always choose the same
action: defection or cooperation. We can generalize agents if
we make their choice dependent on the previous action of the
opponent. To define such an agent we need to specify how
it should respond on the previous defection or cooperation
of its opponent. Moreover, when the agents make the first
move in the sequence of the interactions no previous move
of the opponent is available. So, we have also to specify
what should be the first move of the agent. There are only
8 types of agent of this kind: ccc, ccd, cdc, cdd, dcc, dcd,
ddc, and ddd. In our notation the first letter (c or d) denotes
the action of the agent in the first move (cooperation and
defection, respectively). The second and third letters denote

the reaction of the agent on the cooperative and defective
moves of the opponent in the previous game, respectively.

For 4 different games we have run evolution more that
8200 times starting from random proportions for the 8
different types of agents. In more detail, for every type
of the agent we have generated a random number using
a uniform distribution between 0 and 1. These numbers
were normalized such that their sum is equal to 1. We used
these numbers as initial proportions of the agents of different
kinds.

We have found out that in the case of the prisoners
dilemma the evolutions converged to one of the two states.
The average payoffs of the agents in the two states are 0
and 2. The first state has been observed in 99.94% of cases
and the second state has been observed in the rest of the
cases. The observed states can also be distinguished by the
proportions of the agents of different types.

In the case of the hawk-dove game also two convergence
points have been identified. In the first and the second state
the average payoff of the agents was equal to 1.15 and 1.93,
respectively. The first state has been observed in 88.7% of
cases.

In the case of the harmony game only one final state of
the evolution has been identified. The average payoff of the
agents in this state is equal to 2.

In the case of the stag-hunt game 5 different final states
have been identified. The average payoffs of the agents
in these states are: 0.00, 0.66, 1.00, 1.33 and 2.00. The
frequencies of theses state are 10.47%, 6.70%, 17.66%,
0.35% and 64.82%, respectively.

C. Dynamics of Average Fitness

It is interesting to consider ability of the system, as a
whole, to adapt to the external environment (rules of the
game) and extract as much as possible from the environment
(in terms of the average payoff of the agents). In other words,
the system, as a whole, gets some payoff depending on how
the agents (parts of the system) interact with each other and
what are the relative portions different types of agents in
the system. The system has a mechanism of changing its
state (proportion of different kinds of agents) depending on
the condition of the external environment. The question that
we want to answer is if this mechanism gives the system
an ability to adapt positively to the environment and benefit
from its conditions.

As a result of the evolution the agents with low fitness
become extinct. Does it mean that the average fitness of
agents will increase over time as it is prescribed by the
Fishers fundamental theorem of natural selection? In many
cases the answer is negative. The classical example of
the situation when natural selection constantly reduces the
average fitness of the population is given by the system in
which agents play with each other a single-shot Prisoners
dilemma. In this case a population of only cooperators has
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the highest average fitness, whereas a population of only
defectors has the lowest. However, on the individual level,
defection is always more beneficial than cooperation and, as
a consequence, selections act to increase the relative portion
of defectors. After some time, cooperators vanish from the
population completely.

This example clearly demonstrate that the system is not
always able to adapt positively to the conditions of the
environment. However, as we have demonstrated earlier, if
we enrich the system by more complex agents, it can exhibit
properties of a positive adaptation. For example, in the case
of the prisoners dilemma we have found a state in which
the average payoff of agents in the system was equal to
maximal one. However, this state was very rare. It has been
reached only in 0.06% of cases, if we stared the evolution
from random populations of agents of different kinds.

D. Stability of Adaptive Properties

The next question that we wanted to answer is how
stable is the state in which the system is able to adapt
positively to the priosner’s dilemma conditions. To answer
this question we started from the higher-payoff state of the
prisoners dilemma and have performed a series of jumps to
the conditions corresponding to the other types of games.
Two sequences of conditions have been considered. The
first sequence was: stag-hunt, hawk dove, prisoners dilemma.
The second sequence was: hawk dove, stag-hunt, prisoners
dilemma. In more detail, first we performed 700 hundreds
steps of the evolution under the stag-hunt conditions. This
number of steps was sufficient to reach a convergence. After
that another 700 hundreds steps of evolution have been
performed under the hawk-dove conditions. And finally we
performed another 700 steps of evolution in the prisoners
dilemma settings to check if the system is able to go back
to the original higher-payoff state. In other words, we wanted
to find out if evolution under other conditions destroys the
ability of the system to adapt positively to the prisoners
dilemma settings. To make the test even harder, we have
performed a small randomization of the populations between
the switching of the conditions of the external environment.
The randomization was also performed to include into the
evolutionary process under new conditions those types of
agents which became completely extinct under the previous
phase of the evolution. This test has shown that in 100 out
of 100 cases the system was able to keep the ability to adapt
positively to the prisoners dilemma. In other words, in spite
on the fact that evolution under stag-hunt and hawk-dove
conditions as well as the randomization changed the initial
proportions of the agents the final evolution of the system,
under the prisoners dilemma settings, was always able to
converge to the higher-payoff state. Moreover, we found out
that the ability to adapt positively to the prisoners dilemma
conditions leads to the ability to adapt positively to the stag-
hunt and hawk-dove conditions. In the stag-hunt and hawk-
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Figure 3. Examples of positive and negative adaptation of the system
while changing conditions of the environment

dove cases the evolution of the system converged to the
highest-payoff state. An example of the positive adaptation
is shown in the Figure 3. The red and black dots give an
example of a positive and negative adaptation, respectively.
The green lines show the allowed average payoffs in the
converged state of the corresponding conditions. The test
with the changed order of the stag-hunt and hawk-dove
games leads us to the same conclusions as in the previous
case.

Another interesting property of the considered system is
that evolution of the system under new conditions does not
completely destroy memory of the system about previous
conditions of the evolution. This property can be proven
in the following way. If we start from the populations
corresponding to the higher-payoff state of the prisoners
dilemma and evolve the system in the stag-hunt conditions
until the convergence we will end up in the highest-payoff
state. If we then evolve this system in the prisoners dilemma
settings we will always converge back to the original higher-
payoff state of the prisoners dilemma. We have observed this
behavior in 100 cases out of 100. In contrast, if start from the
random populations and evolve the system in the stag-hunt
conditions in some cases we will converge to the higher-
payoff state. Then, if we start from the higher-payoff state
obtained in this way and start the evolution in the prisoners
dilemma settings, we will converge to the higher-payoff state
of the prisoners dilemma only in about half of the cases (48
cases out of 100 in our experiment). Thus we can say that
the probability that evolution under the prisoners dilemma
conditions will converge to the higher-payoff state depends
not only on from what state we started the evolution (in our
case the higher-payoff state of the stag-hunt conditions) but
also on how the initial state was obtained. Despite the fact
that in both cases we started the evolution from the higher-
payoff state of the stag-hunt conditions, the system had much
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more larger chances to converge to the higher-payoff state
of the prisoners dilemma, if the system already was in the
higher-payoff state of the prisoners dilemma game. This
kind of memory is explained by the fact that a fixed state
does not necessarily mean fixed populations of the agents
of different types. In other words different populations of
the agents of different kinds can correspond to the same
state. For example, in the above considered example of the
memory we had the higher-payoff state for the stag-hunt
conditions. In this case only ccc and ccd agents are present
in the system. However, the relative proportion of these two
types of agents is not fixed. This degree of freedom can be
used to encode the memory of the system.

IV. CONCLUSION

In this work we have presented a model of a complex
adaptive system based on concepts of game theory. An
evolving system of heterogeneous agents interacting with
each other in a game theoretic way has bas introduced.
The influence of the external environment has been modeled
by payoff matrix of the game. The state of the system is
given by the proportion of agents of different types in the
population. The adaptive properties of the system have been
introduced through an evolutionary selection of the agents.
An ability of the system to increase an average payoff under
given external conditions has been studied as an adaptive
process. In this context the importance of the initial state
of the system has been demonstrated. The stability of the
positive adaptation has been considered. Moreover, it has
been demonstrated that the introduced system could have a
memory about the history of the changes of the external
conditions. It has been shown that some memory about
old conditions remains even if the system evolved in new
conditions long enough to reach a convergence.
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