
Leveraging the Ubiquitous Web as a Secure Context-aware Platform
for Adaptive Applications

Heiko Desruelle, Frank Gielen
Dept. of Information Technology – IBCN

Ghent University – IBBT
Ghent, Belgium

{heiko.desruelle, frank.gielen}@intec.ugent.be

John Lyle
Dept. of Computer Science

University of Oxford
Oxford, UK

john.lyle@cs.ox.ac.uk

Abstract—The availability as well as diversity of connected
devices has turned the Internet into a ubiquitous concept. In
addition to desktop and laptop PCs, the Internet also connects
numerous mobile devices, home entertainment systems, and
even in-car units. Various new types software applications
arise, trying to make optimal use of this trend. However, as
the fragmentation of devices and platforms grows, application
developers are increasingly facing the need to cover a wider
variety of target devices. Maintaining a viable balance between
development costs and market coverage has turned out to be
a challenging issue when developing applications for such a
ubiquitous ecosystem. In this paper, we present the Webinos
approach, a distributed web runtime that adaptively leverages
the device-independent characteristics of the Web. By introduc-
ing the concept of context-aware Personal Zones, the Webinos
platform aims to facilitate the development of self-adaptive and
immersive applications, optimized for ubiquitous computing
environments.

Keywords-ubiquitous web; context-aware platform; dis-
tributed runtime; adaptive applications; webinos

I. INTRODUCTION

The Internet is drastically changing the way people work
and live. As the diversity of connected devices is increasing
rapidly, the Internet is penetrating our everyday lives through
a multitude of devices. From desktop and laptop PCs, to
mobile devices, to home entertainment systems and even
in-car headunits, users throughout all consumer segments
should prepare for a connected experience [1]. The evolution
towards a ubiquitous Internet creates the opportunity for
numerous new and innovative software applications. The
main driver for such applications would be to seamlessly
enable the inherently nomadic character of a ubiquitous
system. Furthermore, this driver should aim to enable users
to access and share information whenever and wherever they
want, regardless of the device type that is being used to
initiate the operation.

The development and deployment of applications for such
a ubiquitous ecosystem, however, introduces an important
series of resource-consuming requirements [2]. The available
combinations of hardware characteristics, operating systems,
software frameworks, etc. are virtually endless. For software

developers, this diversity has turned out to be a double-
barreled asset. It provides consumers the freedom to operate
applications at will across several devices. On the other hand,
the device diversity asset heavily fragments the application’s
delivery targets. By the absence of a general native devel-
opment solution, developers often have no alternative than
to create and maintain a set of device-dependent versions of
their applications. Hence, ensuring a viable balance between
development costs and an application’s market coverage will
more than ever become a challenging issue.

Against this backdrop, the use of web technologies for
application development purposes has proven to be a viable
long-term candidate solution [3]. Through years of standard-
ization efforts and the wide adoption of languages such as
HTML, CSS, and JavaScript, the web can be deployed as a
powerful foundation for universal application development
and delivery. Running on top of the Internet infrastructure,
the web application ideology is rapidly gaining momentum
amongst developers.

A web-based application development approach has been
explored from various perspectives. Developers can opt for
pure web applications, running in a standard browser envi-
ronment. However, due to the sandboxed nature of browsers
this approach drastically limits the available APIs (Appli-
cation Programming Interfaces) to the underlying device.
In turn, a hybrid web application approach was introduced
providing developers access to a richer API set, whilst still
maintaining most of the cross-platform advantages from pure
web applications. This type of application is still built using
web technology, but no longer uses the browser as the client-
side runtime environment. A separate client-side web run-
time framework is deployed to bridge the gap between native
and web applications by granting the application scripting
access to most device APIs. Hybrid web applications are
currently being developed using web widget engines such
as provided by the BONDI/WAC [4] initiatives, device-
independent frameworks such as the PhoneGap [5] appli-
cation wrapper, and even completely web-centric operating
systems such as Chromium OS [6] and HP webOS [7].

Current hybrid web application solutions, however, only

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

partially succeed in enabling a convincing ubiquitous expe-
rience [8]. Their main focus lies with porting traditional API
support and operating system aspects to the web. Applica-
tions built upon these old principles result in virtual silos,
unable to truly cross the physical boundaries of a device.
By neglecting the evolution towards, e.g., distributed user
interfaces, adaptive context-aware application behavior, etc.
the true immersive nature of ubiquitous computing is mostly
left behind [9] [10]. The absence of elaborate context-
awareness is a key element driving this issue. In order
for ubiquitous applications to adaptively support various
contextual situations, the underlying application platform
needs to provide structured, as well as secure and up-to-date
access to the user’s contextual setting. This requirement is
not just limited to providing access to a detailed description
of the target delivery context (screen size, interaction meth-
ods, available sensors, etc). Moreover, structured access to
details regarding the user context (personal preferences, so-
cial context, disabilities, etc.) and the physical environment
(location, time, etc.) ought to be supported.

From this perspective, we introduce the Webinos ap-
proach, a platform aiming to support hybrid web applications
across mobile, PC, home media and in-car devices. Struc-
tured along a federated hierarchy, the proposed architecture
enables developers to access a common set of rich context-
aware APIs, allowing applications to dynamically adapt their
cross-user, cross-service, and cross-device functionality in an
open yet secure manner.

The remainder of this paper is structured as follows.
Section II discusses background and related work. Section
III provides a general overview of the proposed federated
application platform. Section IV elaborates on the plat-
form details of setting up secure context-awareness support.
Section V discusses the use case of an adaptive social
networking application. Finally, the conclusion and future
work is outlined in Section VI.

II. BACKGROUND AND RELATED WORK

The availability of detailed and reliable metadata re-
garding a user’s contextual situation provides an important
driver for enabling rich ubiquitous applications. The exact
entities represented by this contextual information can be of
a very dynamic nature, potentially affecting the consumer’s
expectations towards the application’s user interface, behav-
ior, content, etc. In initial context-aware research, context
of use was considered a component containing only two
parameters: the end-user’s location and the set of objects in
the immediate vicinity [11]. The subsequent introduction of
extensible contextual categories has drastically increased the
flexibility of this definition. Chen and Kotz hereto identified
five contextual base categories: the device context, the user
context, the environment context, the time context, and the
historical context [12].

The device context describes the characteristics of the
target device that is being used to access the applica-
tion. A ubiquitous ecosystem covers a diversity of screen
sizes, interaction methods, software support, etc. In web-
based environments, the device capabilities are generally
retrieved through Resource Description Framework (RDF)
devices profiles, i.e., User Agent Profile (UAProf) [13]
and Composite Capability/Preference Profiles (CC/PP) [14].
The necessary device identification step in this process is
handled through HTTP header user agent matching. In order
to facilitate the collection and aggregation of these device
profiles, the W3C Mobile Web Initiative (MWI) standardized
the Device Description Repository specification (DDR). The
specification provides an API and its associated vocabulary
for structured access to context providers services [15]. In
essence, a DDR thus provides a standardized means for
retrieving contextual information about a-priori knowledge
on the characteristics of a particular target device or web
runtime. Various open as well as proprietary DDR im-
plementations are actively being maintained. Most notably
OpenDDR, WURFL, and DeviceAtlas.

In a ubiquitous setting, the end-user’s profile description
gains more and more importance. Besides exposing infor-
mation on user preferences and specific experience, this
model should also comprise knowledge regarding the user’s
specific abilities and disabilities, e.g., enabling accessibility
requirements for providing support to elderly people, and
people with disabilities. From this perspective, Heckmann
proposed the GUMO formalism as a general user model
ontology for representing generic user descriptions using
the Web Ontology Language semantics (OWL) [16]. The
current challenge in this domain is modeling the enormous
amount of parameters and relationships that characterize the
user context [17]. To overcome this issue, forces are being
joined with other ontology-driven projects such as Linked
Data [18], and UbisWorld [19].

The environment-, time-, and historical context aspects
define where, how, and when the interaction between the
user and an application is exactly taking place. The environ-
ment context is specified by observing the numerous sensors
available on the user’s device (e.g., location, temperatures,
network service discovery, the level of background noise,
etc.). Furthermore, the notion of time and historical context
is not to be neglected. As context is a dynamic concept,
support for temporal patterns recognition and management
is needed. The W3C Ubiquitous Web Domain is currently in
the process of standardizing the Delivery Context Ontology
specification (DCO) [20]. The DCO provides a formal model
of the characteristics of the environment in which devices,
applications, and services are operating.

III. WEBINOS HYBRID APPLICATION PLATFORM

In order to enable application developers to set up services
that fade out the physical boundaries of a device, we

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 1. High-level Webinos platform overview

propose the Webinos architecture. Webinos is a federated
web application platform and its runtime components are
distributed over the devices, as well as the cloud. Figure
1 depicts a high-level overview of the platform’s structure
and deployment. The system’s seamless interconnection
principle is cornered around the notion of a so called Per-
sonal Zone. The Personal Zone represents a secure overlay
network, virtually grouping a user’s personal devices and
services. To enable external access to and from the devices
and services in this zone, the Webinos platform defines
centralized Personal Zone Hub (PZH) components. Each
user has his own PZH instance running in the cloud. The
PZH is a key element in this architecture, as it contains a
centralized repository of all contextual data in the Personal
Zone. Moreover, the PZH keeps track of all devices and
services in the zone and provides functionality to enable
their mutual communication. This way, the PZH facilitates
cross-device interaction with someone’s services over the
Internet. The PZHs are federated, allowing applications to
easily discover and share data and services.

On the device-side, a Personal Zone Proxy (PZP) compo-
nent is deployed. The PZP handles the direct communication
with the zone’s PZH. In order to keep the user’s Personal
Zone synchronized, the PZP is responsible for communicat-
ing device status with its PZP. This communication channel
is built around a publisher-subscriber pattern [21]. As all
external communication goes through the PZP, this compo-
nent also acts as a policy enforcement point by managing
all access to the device’s exposed resources. In addition, the
PZP is a fundamental component in upholding the Webinos
platform’s offline usage support. Although the proposed
platform is designed with a strong focus on taking benefit
from online usage, all devices in the Personal Zone have

access to a locally synchronized copy of the data maintained
by the PZH. The PZP can thus act in place of the PZH in
case no reliable Internet connection can be established. This
allows users to still operate the basic functionality of their
applications even while being offline. All data to and from
the PZP is again synchronized with the PZH as soon as the
Internet access gets restored.

The Web Runtime (WRT) represents the last main com-
ponent in the Webinos architecture. The WRT can be
considered as the extension of a traditional web browser
engine (e.g., WebKit, Mozilla Gecko). The WRT contains
all necessary components for running and rendering web
applications specified using standardized web technologies:
HTML parser, JavaScript engine, CSS processor, rendering
engine, etc. Furthermore, the WRT maintains a tight binding
with the local PZP. The WRT-PZP binding allows the WRT
to be much more powerful than traditional browser-based
application environments. Through this binding, applications
running in the WRT are able to securely interface with local
device APIs and services. In addition, the PZP also allows
the runtime to connect and synchronize with other devices
in the Personal Zone through its binding with the PZH.

IV. SECURE CONTEXT-AWARE PERSONAL ZONE

The innovative nature of the proposed approach lies with
the platform’s capability to establish a cross-device, cross-
service, cross-user overlay network. For this Personal Zone
concept to be successfully adopted by ubiquitous application
developers, the platform needs to provide these developer
access to a rich at-runtime overview of the user’s contextual
setting. As stipulated in Section I, elaborate platform support
for transparent context management is vital. In this section,
we provide more detail on the available developer tools for

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 2. Simplified Webinos Personal Zone context model

setting up secure context-awareness within a Personal Zone
environment.

A. Delivery Context Model

The Webinos delivery context model is defined to span
all the platform’s contextual knowledge within the user’s
Personal Zone. The model builds upon the W3C’s Delivery
Context Ontology (DCO) specification [20]. The Webinos
delivery context model comprises four top-level submodels:
the user context, the device context, the environment context,
and the application context (see Figure 2 for a high-level
overview). The first three submodels are internally managed
and updated by the Webinos platform, whilst the application
context model is to be maintained by the application devel-
oper. In order for each of these proposed models to support
historical evaluation, pattern detection, conflict resolution
strategies, all stored context properties are timestamped. The
contextual information regarding the Personal Zone’s owner
is described by the user context model. This model consists
of an aggregation of user profile data, user preferences,
social context information, etc. Furthermore, each device
and its physical environment are described by a separate
instance of respectively the device context model and the en-
vironment context model. A device context model comprises
knowledge regarding the corresponding device’s availability
in the Personal Zone, hardware characteristics, supported
software, etc. The environment context model contains a
description of a certain device’s location, surrounding noise
levels, etc. Lastly, the application context model provides
developers the freedom to store a number of contextual
properties, describing a situation from the perspective of
their application.

B. Context Framework and API

The Webinos context framework is built on top of the
above described context models. As depicted in Figure
1, providing application developers access to an elaborate
distributed context framework is one of the core Webi-
nos service. The Webinos context framework provides all
necessary functionality for acquiring, storing, inferring new
knowledge, and granting external access to the available
contextualized data. Web applications running in the We-
binos WRT, as well as other Webinos services, can rely

on this framework to support their at-runtime need for
contextualized data.

The Webinos Personal Zone is structured as a distributed
system. In order to keep the zone synchronized, strong
communication facilities between the device PZPs and the
centralized PZH have architecturally been put in place. The
Webinos context framework tries to makes optimal use of
this structured communication channel to gain additional
contextual knowledge regarding the Personal Zone. The
context framework hooks into the PZP’s event dispatching
and synchronization mechanism. As visualized in Figure 3,
out-bound status events are intercepted by the framework’s
context acquisition component and subsequently filtered for
relevant data. The extracted context is locally stored and
synchronized with the rest of the zone through a context-
update event over the communication channel. The context
acquisition process is autonomously managed by the Webi-
nos platform and operates completely transparent for both
the user and application developers. Moreover, the context
framework is closely coupled with the PZP’s security and
policy enforcement framework. This binding ensures the
secure handling of all context data that is being stored and
accessed, as it often contains highly sensitive information.

For application developers aiming to create context-aware
ubiquitous applications, the context framework provides an
API to access Personal Zone wide context information.
The context API supports the W3C standardized SPARQL
RDF query language for unambiguously stating powerful
context queries [22]. All context API requests are passed
to the query processor component. The processor parses
the request and checks its execution rights in collaboration
with the PZP’s policy enforcement framework. In case the
request is granted by the PZP, the query is optimized and
dispatched for execution. The API supports two modes for
accessing context information: a generic query mode, and a
change subscription mode. The generic query mode allows
applications to execute targeted queries for specific context
data in the storage system. The change subscription mode,
on the other hand, enables an application to subscribe for
specific context update events. These events are triggered by
the context framework when new contextual knowledge is
acquired.

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 3. Webinos platform’s distributed context framework, enabled
through its tight integration with the Personal Zone

C. Policy Enforcement Support

The Webinos platform aims to meet the security and
privacy requirements of applications and end users primarily
through an access control policy system. Every access to
a Webinos API is mediated by policies, enforced by the
Personal Zone Proxies on each device as well as in the
Personal Zone Hub. This action follows the principle of
least privilege, granting applications only the permissions
they require. Access policies are set when an application
is first installed and can be updated subsequently. The
policy system is derived from the BONDI/WAC architecture
[4] and uses XACML (eXtensible Access Control Markup
Language) including a number of extensions developed by
the PrimeLife project [23]. XACML is a general-purpose
access control language for defining policies based on sub-
jects, resources, action and conditions [24]. By including
the PrimeLife XACML extensions, the Webinos policy en-
hancement framework can allow users to specify detailed
situation-specific access control policies. This is a significant
advantage over current web runtime solutions and native
mobile application platforms, where once an application has
been granted access to a particular asset this access can be
reused without further control.

Context data is often privacy-sensitive, as its analysis
might reveal a user’s history of actions or the people and
devices they have interacted with. The Webinos platform
aims to follow the principle of least surprise, so that a
minimum of unexpected data disclosures will occur. This is
achieved by disabling the collection of most context data by
default, and providing the user a simple interfaces to turn it
on again, complete with feedback about the kind of data that

is being shared and stored. Where possible, data is filtered to
remove unnecessary personal data. The main advantage of
the Webinos platform is that context data remains within the
zone and under the control of the end-user. This compares
favorably to online user tracking, as users are able to view
and manage the data stored about them, and applications
will have to request specific access to this information.

V. USE CASE

To elaborate on the application possibilities of the We-
binos approach, we present a use case that has been built
with the platform. The application is a cross-device social
media app, able to use the APIs of television sets, mobile
devices and desktop computers within a Personal Zone.
The application utilizes the platform’s default knowledge
of a user’s devices as well as their exposed capabilities
and services. A user has the possibility to set policies for
dispatching system API calls of the application to alternative
devices. In result, the input (i.e., multimedia access, text
input modality, contacts retrieval, etc.) and output (i.e.,
display selection) operations are adaptively abstracted from
the traditional physical device level to the Personal Zone
level. E.g., if a user wants to post a new message to one of
his contacts on the Twitter social network: he can use his
television set for displaying the main UI, use his smartphone
an interaction device for navigating through the interface,
putting in text, and accessing the device’s contact list, access
this home media center to attach a video to his post, etc.

A prototype of the proposed platform and use case are
implemented and made available as part of the Webinos open
source project [25]. Based on the project’s extensive analysis
of the current ubiquitous ecosystem [26], the following
prototype platforms have been selected: PC (Linux, Win-
dows, MacOS), mobile (Android), vehicles (Linux), home
entertainment (Linux).

VI. CONCLUSION AND FUTURE WORK

In this paper we presented the Webinos application
platform approach, aiming to enable immersive ubiquitous
software applications by leveraging the cross-platform pos-
sibilities of the web. The proposed approach utilizes the web
infrastructure to establish its Personal Zone concept, a virtual
overlay network for grouping all of user’s devices and avail-
able services. Through the federated structure of Personal
Zones, Webinos is able to provide application developers
access to elaborate at-runtime context data regarding the
current user, his devices, and the surrounding environment.
The availability of this information allows developers to
more accurately anticipate to a user’s contextual situation.
The Webinos platform’s context-awareness enables numer-
ous applications that make full use of the diversity and
interconnectivity of devices. From this perspective, Webinos
aims to be a key enabler in the realization of ubiquitous

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

applications that are able to execute across the physical
boundaries of devices.

While the extensive evaluation of our approach has yet to
be carried out, initial testing of prototype implementations
shows promising results. Although the proposed platform
addresses challenging issues in the ubiquitous application
development domain, the current architecture only represents
a first milestone in the pursuit of true ubiquitous appli-
cation convergence. Whilst the Webinos platform provides
structured access to rich contextual knowledge, it is still
the application developers’ responsibility to incorporate the
necessary logic that allows their applications to act ac-
cordingly. Therefore, future work should include research
on further extending the platform with (semi-) automated
application adaptation mechanisms, driven by the platform’s
rich context-awareness. Regarding the privacy and security
impact of such an application runtime, there will undoubt-
edly be a need to further experiment with user interfaces.
This in order to strike an acceptable balance between the
advantages that context sensitivity can offer, as well as
privacy and user and developer convenience.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
(FP7-ICT-2009-5, Objective 1.2) under grant agreement
number 257103 (Webinos project).

REFERENCES

[1] M. Tuters and K. Varnelis, “Beyond locative Media: giving
Shape to the Internet of Things,” Leonardo, vol. 39, no. 4,
2006, pp. 357-363.

[2] G. Banavar and A. Bernstein, “Challenges in design and soft-
ware infrastructure for ubiquitous computing applications,”
Advances in computers, vol. 62, 2004, pp. 179-202.

[3] G. Lawton, “Moving the OS to the Web,” Computer, vol. 41,
no. 3, 2008, pp. 16-19.

[4] Widget runtime high level technical specifications, Wholesale
Application Community (WAC) specification version 1, 2010.

[5] A. Charland and B. Leroux, “Mobile application develop-
ment: web vs. native,” Communications of the ACM, vol. 54,
no. , 2011, pp. 49-53.

[6] W.T. Tsai, Q. Shao, X. Sun, and J. Elston, “Real-Time
Service-Oriented Cloud Computing,” in Proc. IEEE 6th World
Congr. on Services, 2010, pp. 473-478.

[7] A. Weiss, “WebOS: say goodbye to desktop applications,”
Networker, vol. 9, no. 4, 2005, pp. 18-26.

[8] A. Taivalsaari and T. Mikkonen, “The Web as an Application
Platform: The Saga Continues,” in Proc. IEEE 37th Conf. on
Software Engineering and Advanced Applications, 2011, pp.
170-174.

[9] H. Desruelle, D. Blomme, and F. Gielen, “Adaptive user
interface support for ubiquitous computing environments,” in
Proc. 2nd Int. Workshop on User Interface eXtensible Markup
Language, 2011, pp. 107-113.

[10] H. Desruelle, D. Blomme, and F. Gielen, “Adaptive mobile
web applications through fine-grained progressive enhance-
ment,” in Proc. 3rd Int. Conf. on Adaptive and Self-Adaptive
Systems and Applications (ADAPTIVE), 2011, pp. 51-56.

[11] B. Schilit, N. Adams, and R. Want, “Context-aware Comput-
ing Applications,” in Proc. IEEE 1st Int. Workshop on Mobile
Computing Systems and Applications, 1994, pp. 85-90.

[12] G. Chen and D. Kotz, “A Survey of Context-aware Mobile
Computing Research,” Dept. Computer Science, Dartmouth
College, Tech. Rep. TR2000-381, 2000.

[13] WAG UAProf, Wireless Application Protocol specification
WAP-248-UAPROF-2001020, 2001.

[14] Composite Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 1.0, W3C recommendation, 2004.

[15] Device Description Repository Core Vocabulary, W3C work-
ing group note, 2008.

[16] D. Heckmann, “Ubiquitous User Modeling,” Ph.D. disserta-
tion, Dept. of Computer Science, Saarland University, 2005.

[17] J.L.T. Silva, A. Moreto Ribeiro, E. Boff, T. Primo, and R.M.
Viccari, “A Reference Ontology for Profile Representation in
Communities of Practice,” Metadata and Semantic Research,
vol. 240, 2011, pp. 68-79.

[18] T. Heath and C. Bizer, “Linked data: Evolving the web into
a global data space,” in Synthesis Lectures on the Semantic
Web: Theory and Technology, vol. 1, no. 1. Morgan &
Claypool, 2011, pp. 1-136.

[19] D. Heckmann, M. Loskyll, R. Math, P. Recktenwald, and C.
Stahl, “Ubisworld 3.0: A Semantic Tool Set for Ubiquitous
User Modeling,” in Proc. 17th Int. Conf. on User Modeling,
Adaptation and Personalization, 2009.

[20] Delivery Context Ontology, W3C working group note, 2010.

[21] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-oriented software architecture: A system of
patterns. West Sussex: John Wiley & Sons, 2001.

[22] T. Segaran, C. Evans, and J. Taylor, Programming the Seman-
tic Web. Sebastropol: O’Reilly Media, 2009.

[23] C.A. Ardagna, S. De Capitani Di Vimercati, E. Pedrini,
and P. Samarati, “Primelife policy language,” in Proc. W3C
workshop on access control application scenarios, 2009.

[24] eXtensible Access Control Markup Language (XACML) ver-
sion 1.1, OASIS standard, 2003.

[25] Webinos, “Webinos Developer Portal,” Available: https://
developer.webinos.org/ [May. 1, 2012].

[26] Webinos, “Industry landscape, governance, licensing and IPR
frameworks,” Tech. Rep. D02.3, 2011.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

https://developer.webinos.org/
https://developer.webinos.org/

	Introduction
	Background and Related Work
	Webinos Hybrid Application Platform
	Secure Context-aware Personal Zone
	Delivery Context Model
	Context Framework and API
	Policy Enforcement Support

	Use Case
	Conclusion and Future Work
	References

