
A QoS Optimization Model for Service Composition

Silvana De Gyvés Avila, Karim Djemame
School of Computing
University of Leeds

Leeds, UK
e-mail: {scsdga, scskd}@leeds.ac.uk

Abstract— The dynamic nature of the Web service execution
environment generates frequent variations in the Quality of
Service offered to the consumers, therefore, obtaining the
expected results while running a composite service is not
guaranteed. Adaptation approaches aim to maintain functional
and quality levels, by dynamically adapting composite services
to the environment conditions reducing human intervention.
This paper presents an adaptation approach based on self-
optimization. The proposed optimization model performs
service selection based on the analysis of historical and real
QoS data, gathered at different stages during the execution of
composite services and the establishment of priorities between
the service quality attributes. Experimental results show
significant improvements in the global QoS of the use case
scenario, providing reductions up to 16% in the global cost and
14% in response time.

Keywords - Web service composition; adaptation;
optimization; Quality of Service.

I. INTRODUCTION

Web services are modular, self-contained and reusable
software components that rely on open XML-based
standards to support machine-machine interactions over
distributed environments [1]. Some of the benefits offered
by services include time/cost reduction during software
development and maintenance. When a single service does
not accomplish a consumer’s requirement, different services
can be used in conjunction to create a new value-added
service to fulfil this requirement. A composite service
provides a new software solution with specific
functionalities and can be seen as an atomic component in
other service compositions or as a final solution to be used
by a consumer [2]. The process of developing a composite
Web service is called service composition.

Development in the field of service composition has
resulted in a set of dataflow models (orchestration and
choreography), approaches (static, dynamic, manual and
automatic) and techniques (model-driven, declarative,
workflow-based, ontology-driven and AI-Planning) that
enable composition from different perspectives. However,
some challenges still remain open, which are closely related
to automatic-dynamic service composition and include the
implementation of mechanisms that enable: Quality of
Service awareness, adaptive capabilities, risk awareness,
conformance, security and interoperability.

The approach proposed in this paper is mainly focused
on adaptive mechanisms for service composition. Adaptive

mechanisms provide software systems with capabilities to
self-heal, self-configure, self-optimize, self-protect, etc.,
considering the objectives the system should achieve, the
causes of adaptation, the system reaction towards change
and the impact of adaptation upon the system [3].

Adaptation in service composition aims to mitigate the
impact of unexpected events that take place during the
execution of composite services, maintaining functional and
Quality of Service (QoS) levels. By implementing adaptive
mechanisms, composite services should be able to morph
and function in spite of external and internal changes,
searching to maximize the composition potential and
reducing as much as possible human involvement.

This work presents a self-optimization solution for
service composition. The proposed optimization model
performs service selection based on historical QoS data and
real data, which is collected at runtime during different
stages of the composite service execution. Upon invocation,
a set of tasks are executed as defined in the service
workflow. QoS data evaluation from previous tasks enables
the model to determine priorities between the QoS
attributes, and these priorities are applied during service
selection. The approach has been implemented in a
framework and was evaluated empirically by analyzing the
execution through a use case. The major contribution of this
paper is:

• The optimization model for service composition that

analyzes global QoS from previous tasks in order to
determine priorities for service selection.

This paper is structured as follows: background and

related work are described in Section II. Section III presents
the proposed framework, service selection and optimization
models. Section IV presents the experimental description
and results. Conclusions and future work are given in
Section V.

II. BACKGROUND AND RELATED WORK

In service composition, it is necessary to have a set of
available services that offer certain functionality and also
fulfil Quality of Service constraints [4].

QoS properties refer to non-functional aspects of Web
services, such as performance, reliability, scalability,
availability and security [5]. By evaluating the QoS aspects
of a set of Web services that share the same goals, a

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

consumer could identify which service meets the quality
requirements of the request.

The QoS attributes of a service can be evaluated during
design and execution time. At design time, these attributes
help in order to build a composite service based on the QoS
requirements of the user. While at execution time, they can
be monitored to maintain the desired QoS level. Information
about these attributes can be obtained from the service’s
profile [6], nevertheless, when this information is not
available, it can be obtained by analyzing data collected
from past invocations [7].

Different approaches have been presented to evaluate
QoS attributes in service composition, aiming to select a set
of components that optimize the global QoS. Some of these
approaches are based on the works described in [7] and [8],
which proposed mathematical models to compute QoS of
composite services based on the QoS of their components
and consider time, cost, reliability, availability and
reputation as the quality criteria to evaluate.

To experience an expected behaviour during the
execution of a composite service, it is important to consider
the QoS aspects of the services involved, as their drawbacks
will be inherited by the composite service. However,
unexpected events occur, e.g., services become unavailable
or exhibit discrepancies in their QoS [9], bringing the need
of mechanisms such as adaptation, in order to restore and
maintain the functional and quality aspects of the
composition.

Based on the objectives of the composition and the
causes and impact of adaptation, different self-adaptive
properties can be selected and implemented. The most used
properties in service composition approaches are self-
healing [10], self-configuration [11] and self-optimization
[12]. Each of these properties can be related to different
attributes, like availability, survivability, maintainability,
reliability, efficiency and functionality [13].

Self-healing mechanisms aim to prevent composite
services from failing, from functional and non-functional
perspectives. Projects such as those are presented in [14-21],
apply self-healing approaches, where new services are
selected and invoked after a functional failure or a QoS
constraint violation.

In self-configuring approaches, like those presented in
[9] and [22], service selection is performed by searching for
an optimal configuration of components based upon the
initial constraints.

On the other hand, mechanisms that implement self-
optimization are closely related to the selection of services
at runtime, in order to maintain the expected QoS of the
entire composition. Examples of works belonging to this
category are described in [16], [21] and [22].

Although these approaches are closely related with the
work described in this paper, there are meaningful
differences. Firstly, the proposed optimization approach
takes into consideration the QoS values measured from
previous tasks at the time of selecting a new service.
Secondly, optimization of QoS is also considered when the
measured QoS values at certain point of the composite

service execution is better than expected, enabling the
improvement of other QoS attributes.

III. SYSTEM MODEL

The implementation and evaluation of the proposed
approach requires to setup an environment in which QoS
aware and adaptive composition can be executed. The
system model illustrated in Fig. 1 has been developed with
this purpose. Its core components are described as follows:

• Service Binder: binds dynamically each of the tasks

in the composition to executable services. These
services are selected using functional and QoS
criteria.

• Service Selector: by using required functional and
quality information, this module searches in the
service registry for those elements that fulfil
functional and quality requirements.

• Predictor: obtains estimates for the QoS attributes of
the selected services by using predictive algorithms
and a collection of historical QoS data.

• Sensors: collect information about different events
at run time and send it to the adaptation module.
Events are related to quality aspects of the involved
compositions’ elements.

• Adaptation module: monitors and analyzes the
behaviour of composite services at runtime and
according to its analysis, determines when it is
needed to perform certain changes in order to
improve/maintain the offered QoS of the
compositions.

• Effectors: apply the actions provided by the
adaptation module, enabling composite services to
adapt at runtime.

• Composition engine: executes the composite
services (processes’ definitions).

Composite services are considered to consist of a series

of abstract tasks that will be linked to executable services at
runtime. To obtain these services, for each task the service
binder invokes the service selector (SS) and it requests the
desired characteristics that the component service should
provide.

Figure 1. System model.

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

The SS performs a search into the service registry based
on the provided functional requirements. For each of the
pre-selected services (candidates), the SS module invokes
the predictor to obtain its estimated QoS. The SS compares
the results and sends the information about the service that
suits the request to the binder.

When the composite service is being executed, sensors
capture information about the behaviour of the service and
its components, QoS data is being stored in the historical
database. Sensors send this information to the adaptation
module, which determines if adaptation is needed and the
appropriate adaptation strategy. Finally, it sends the actions
to be performed to the corresponding effectors, in order to
maintain/improve the QoS of the composition.

It is considered that at the time of invoking a composite
service, the system has available data from previous
executions of the different possible components, in order to
obtain accurate predictions about these components’ quality
characteristics. Also, for each task of the composite service,
there exist at least two concrete services to invoke.

A. Service Selection Model

Different QoS attributes can be associated with Web
services [7-8], which could be used as a differentiating point
in the preference of consumers. In this work, the following
quality attributes, which have been used in other approaches
([4],[14-16]), will be considered for each service:

• Response time: the time consumed between the

invocation and completion of the service operation
[14];

• Cost: fee charged to the consumer when invoking a
service [16].

Estimation of QoS values is a key step during service
selection process. Estimated values are calculated using
historical QoS data recorded from previous executions. This
data is filtered, discarding values considered as outliers and
the average of the last N executions of the remaining subset
is obtained.

Concrete services are searched in the registry by name,
assuming that this parameter includes/describes the service’s
functionality. The resulting set of candidate services is
sorted according to the relationship between their estimated
response time and cost. Due to these attributes having
different units of measure, the raw values are first
normalized with natural logarithms. Results are then
computed using the Simple Additive Weighting formula:

Wi = ti (w1) + ci (w2) (1)

where:
ti corresponds to the service estimated response time,
ci corresponds to the service estimated cost,
w1 and w2 correspond to weights where w1 + w2 = 1 and
w1, w2 ≤ 1.

Figure 2. QoS evaluation algorithm.

B. Optimization Model

Monitoring the execution of services is a critical task in
the adaptation process. By monitoring and collecting data
from services executions, based on their behaviour it is
possible to take decisions about future actions [23]. As part
of this work, at runtime QoS information is collected from
service, task and process perspectives, where service
corresponds to concrete Web services; task to elements
within the composite service that invoke services; and
process to the entire composition (service workflow).
Response time is measured during each stage of the process,
while cost is obtained from the WSDL files of the services.
The QoS values of a task are registered as an individual
invocation and as the accumulated QoS of the composition
at the time of executing the task.

The optimization approach is based on the service
selection model previously described. It uses variable
weights and performs a service reselection on the obtained
set of candidates. When the accumulated response time (or
cost) of the previous activity in the process is less than
expected, it provides some slack that can be used while
selecting the next service in the process.

Before invoking a Web service operation, the measured
accumulated QoS values of the previous task are evaluated
and compared to the corresponding estimated values. The
algorithm presented in Fig. 2 describes the QoS evaluation
method applied during optimization. After obtaining the
differences between the estimated and real QoS values
(steps 1 and 2), these values are compared to the maximum
desired percentage of difference between real and estimated
values, represented by ω and φ. The first comparison is
performed based on response time (step 5), if there is no

Input:
estRT � estimated accumulated response time
estC �estimated accumulated cost
rt � real response time
rc � real cost
w1, w2 � weights
ω� maximum difference between estRT and rt
φ � maximum difference between estC and rc

Output:
α � response time weight
β �cost weight

(1) ψ  calculate response time difference (estRT - rt)
(2) δ  calculate cost difference (estC - rc)
(3) α  β  0.5
(4) Sort by response time
(5) if ψ ≥ ω || -δ ≥ φ then
(6) α  w1
(7) β  w2
(8) else
(9) Sort by cost
(10) if δ ≥ φ || -ψ ≥ ω then
(11) α  w2
(12) β  w1
(13) return α and β

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

adaptation required, then evaluation is carried out based on
cost (step 10). The algorithm returns α and β (step 13),
which are the new weights to apply in the service selection
process. These weights are established as float values that
give priority to a certain attribute.

IV. EVALUATION

In order to asses the effectiveness of the proposed
optimization approach, an experimental environment was
setup and a composite service was developed as use case.

 Elements described in Section III were deployed and
configured within the experimental environment.
Experiments were carried out to address the following
question:

• Is there any improvement in the global QoS when

using variable weights during service selection as
part of a self-optimization mechanism?

A. Experimental Environment

The experimental environment is illustrated in Fig. 3. It
consists of one computer with Windows Vista, 4GB RAM
and one Intel core2 duo 2.1GHz processor (node 1); and two
virtual machines with lubuntu 11.10, 512 Mb RAM and one
processor (node 2 and 3). Node 1 hosts the BPEL engine
(Apache ODE 1.3.4), service registry (jUDDI 3.0.4),
historical data base (MySQL 5.1.51) and one application
server (Tomcat 6.0.26). Node 2 and 3, host one application
server each (Tomcat 6.0.35). Web services, are allocated in
the application servers.

This environment works in a Local Area Network
(LAN), and considers response time of Web services
running over a Wide Area Network (WAN) when executing
the local services. However, in further experiments it is
important to perform a detailed analysis of the behaviour of
Web services (e.g., faults, availability, latency) over a
WAN, in order to obtain results closer to a realistic scenario.

B. Experiment Description

The test case is a BPEL [24] service that implements a
travel planning process. It validates a credit card, performs
flight and hotel reservations in parallel, and finally invokes a
car rental operation. This service is hosted and invoked from
Node 1.

Figure 3. Experimental environment.

Figure 4. Travel planning process.

The travel planning service is illustrated in Fig. 4. Per
each of the tasks in the process, there are 9 candidate
services that fulfil the required functionality and offer
different QoS. These services were previously registered
into the service registry (UDDI), and executed several times
to populate the historical data base and enable the estimation
of their QoS attributes.

Based on the analysis of the behaviour of Web services
found on the Internet, response time of the candidate
services was modified by adding random delays generated
with a log-normal distribution. The distribution and its input
values were determined after executing 5 services 1,000
times, collect their response times and analyze the difference
between each execution.

The travel planning service was executed 50 times to
analyze the behaviour of the optimization approach and
evaluate its overall benefit. The maximum difference
between estimated/real response time and cost was
established as 10%. The service was also executed
performing a simple service selection without QoS analysis.

As weights are those that provide priorities to the QoS
attributes at the time of performing a service selection,
values for w1 and w2 (algorithm in Fig. 2) were set as 0.3
and 0.7, respectively.

C. Evaluation Results

Initial results show that the proposed approach provides
a meaningful improvement on the global QoS over a simple
service selection approach. Global QoS refers to the final
values of the different QoS properties (response time and
cost) of the composite service. Fig. 5 and Fig. 6 present a
comparison between both approaches based on response
time and cost, respectively.

The first plot shows that the measured response time of
the composite service executed using the optimization
approach is closer to the corresponding estimated values, as
compared to the behaviour of the simple selection approach,
where most of the values are above the estimations.
Measured average response time values correspond to 7049
ms and 7416 ms, where the proposed approach provides a
mean reduction of 5%, a highest reduction of 14% and
standard deviation of 7.45%.

Contrary to the behaviour of response time, cost
estimations for the proposed approach are not close to the
real measurements. As illustrated in Fig. 6, most values are
above estimations; nevertheless, there can be found some
significant cost reductions, the highest being of 16%.
Average cost value was 452, with a standard deviation of
6.8%.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

Figure 5. Composite service response time comparison between

optimization and simple selection approaches.

Figure 6. Composite service cost comparison between optimization and

simple selection approaches.

To summarize the behaviour of both approaches, Fig. 7
presents a plot where response time and cost values were
normalized and related using the Simple Additive Weighting
formula presented in Section III. For both QoS attributes
weights were established at 0.5.

From a global perspective, results demonstrate that using
the proposed approach provides better QoS values, in most
of the service executions.

It was noticed during the evaluation stage, that the
overhead caused by the use of a service registry and
predictive algorithms oscillate between 1500 and 2000 ms,
which represent an important delay at runtime.

Figure 7. Composite service Simple Additive Weight comparison between

optimization and simple selection approaches.

V. CONCLUSION AND FUTURE WORK

The execution of a composite service can be
compromised by changes in the behaviour of its
components. Mechanism such as adaptation, focus upon
reducing the impact of these changes.

 Adaptation in service composition aims to
maintain/improve functional and quality levels while
executing composite services. Thus, the development of
adaptation mechanisms for service composition is an
important task.

This work presents an adaptation approach for service
composition that implements a self-optimization
mechanism. During composite service execution, QoS
attributes are monitored and optimization is triggered if
there is a difference between estimated and real values.

In summary, evaluation indicates that by using the
proposed approach, there can be achieved significant
improvements in the global QoS of the composite services.

This paper is part of an ongoing research. Future work
includes the extension of the quality criteria, considering
other key QoS attributes like availability and reliability.
Also, it is planned to investigate different self-adaptive
properties and extend the actual framework, in order to
increase the coverage of events that can occur at runtime.

REFERENCES
[1] W3C Working Group. "Web Services Architecture".

Available: http://www.w3.org/TR/ws-arch/ [May, 2012].
[2] S. Dustdar and W. Schreiner, "A survey on web services

composition," International Journal of Web and Grid Services,
vol. 1, pp. 1–30, 2005.

[3] B. H. Cheng, et al., "Software Engineering for Self-Adaptive
Systems: A Research Roadmap," Software Engineering for
Self-Adaptive Systems, Lecture Notes In Computer Science,
vol. 5525, pp. 1-26 2009.

[4] D. Ardagna and R. Mirandola, "Per-flow optimal service
selection for Web services based processes," Journal of
Systems and Software, vol. 83, pp. 1512-1523, 2010.

[5] W3C Working Group. "QoS for Web Services: Requirements
and Possible Approaches". Available:
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/ [May, 2012].

[6] S.-Y. Hwang, et al., "A probabilistic approach to modeling and
estimating the QoS of web-services-based workflows,"
Information Sciences, vol. 177, pp. 5484-5503, 2007.

50454035302520151051

3.36

3.34

3.32

3.30

3.28

3.26

3.24

3.22

3.20

Number of executions

S
im

pl
e

 A
dd

iti
ve

 W
e

ig
ht

Optimization Approach

Simple Selection Approach

50454035302520151051

500

480

460

440

420

400

380

Number of executions

C
o

st

Cost (w/opt)
Est. cost (w/opt)
Cost (no opt)
Est. cost (no opt)

50454035302520151051

11000

10000

9000

8000

7000

6000

Number of executions

R
e

sp
o

ns
e

 ti
m

e
 (

m
s)

Response time (w/optimization)
Estimated response time (w/optimization)
Response time (no optimization)
Estimated response time (no optimization)

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

[7] J. Cardoso, et al., "Quality of service for workflows and Web
service processes," Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 1, pp. 281-308, 2004.

[8] L. Zeng, et al., "QoS-Aware Middleware for Web Services
Composition," IEEE Trans. Softw. Eng., vol. 30, pp. 311-327,
2004.

[9] P. Châtel, et al., "QoS-based Late-Binding of Service
Invocations in Adaptive Business Processes," in Proceedings
of the 2010 IEEE International Conference on Web Services,
2010, pp. 227-234.

[10] WS-Diamond Team, "WS-DIAMOND: Web Services-
DiAgnosability, MONitoring and Diagnosis," MIT press, pp.
213-239, 2009.

[11] A. C. Huang and P. Steenkiste, "Building Self-Configuring
Services Using Service-Specific Knowledge," in Proceedings
of the 13th IEEE International Symposium on High
Performance Distributed Computing, 2004, pp. 45-54.

[12] D. Ardagna, et al., "PAWS: A Framework for Executing
Adaptive Web-Service Processes," Software, IEEE, vol. 24,
pp. 39-46, 2007.

[13] M. Salehie and L. Tahvildari, "Self-adaptive software:
Landscape and research challenges," ACM Transactions on
Autonomous and Adaptive Systems, vol. 4, pp. 1-42, 2009.

[14] Y. Dai, et al., "QoS-Driven Self-Healing Web Service
Composition Based on Performance Prediction," Journal of
Computer Science and Technology, vol. 24, pp. 250-261,
March 2009.

[15] Y. Ying, et al., "A Self-healing composite Web service model,"
in Proceedings of the IEEE Asia-Pacific Services Computing
Conference, 2009 (APSCC), 2009, pp. 307-312.

[16] V. Cardellini, et al., "MOSES: A Framework for QoS Driven
Runtime Adaptation of Service-Oriented Systems," Software
Engineering, IEEE Transactions on, vol. PP, 2011.

[17] D. Ardagna, et al., "A Service-Based Framework for Flexible
Business Processes," Software, IEEE, vol. 28, pp. 61-67, 2011.

[18] D. Bianculli, et al., "Automated Dynamic Maintenance of
Composite Services Based on Service Reputation," in
Proceedings of the 5th international conference on Service-
Oriented Computing (ICSOC '07), Vienna, Austria, 2007, pp.
449-455.

[19] L. Wenjuan, et al., "A framework to improve adaptability in
web service composition," in 2nd International Conference on
Computer Engineering and Technology (ICCET), Chengdu,
2010.

[20] A. Erradi and P. Maheshwari, "Dynamic Binding Framework
for Adaptive Web Services," in Proceedings of the 2008 Third
International Conference on Internet and Web Applications
and Services, 2008, pp. 162-167.

[21] G. Canfora, et al., "A framework for QoS-aware binding and
re-binding of composite web services," The Journal of Systems
and Software, vol. 81, pp. 1754-1769, 2008.

[22] R. Calinescu, et al., "Dynamic QoS Management and
Optimization in Service-Based Systems," IEEE Trans. Softw.
Eng., vol. 37, pp. 387-409, 2011.

[23] A. Erradi, et al., "WS-Policy based Monitoring of Composite
Web Services," in Proceedings of the Fifth IEEE European
Conference on Web Services, 2007, pp. 99-108.

[24] OASIS. "Web Services Business Process Execution Language
Version 2.0". Available: http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html [May, 2012].

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-219-6

ADAPTIVE 2012 : The Fourth International Conference on Adaptive and Self-Adaptive Systems and Applications

