
Dynamic Adaptation of Opportunistic Sensor Configurations for Continuous and
Accurate Activity Recognition

Marc Kurz, Gerold Hölzl, Alois Ferscha
Johannes Kepler University Linz
Institute for Pervasive Computing

Linz, Austria
{kurz, hoelzl, ferscha}@pervasive.jku.at

Abstract—An ever-larger availability of devices that are
attached with different sensing capabilities (e.g., smart phones)
shifted the challenge in activity and context recognition from
the application specific deployment of new sensors to the
utilization of already available devices. Therefore, a system
that operates in an opportunistic way has to take advantage
of the currently available sensing infrastructure in terms of
utilizing sensors in form of ensembles that are best suited
to execute a specific activity recognition task. Continuous,
stable, and accurate activity recognition can be assured if such
a system is able to react in real-time to such dynamics in
the sensing infrastructure. In detail, this paper tackles the
characteristic application cases where sensors spontaneously
appear, disappear and reappear in the sensing infrastructure
and evaluates the continuousness and stability of the self-
adaption methods within the OPPORTUNITY Framework,
which is a reference implementation of an opportunistic activity
and context recognition system.

Keywords-Opportunistic sensing; activity and context recogni-
tion; self-adaptation.

I. INTRODUCTION

Opportunistic activity recognition is characterized by the
fact that sensor systems that gather environmental data to
infer people’s activities are not presumably known at design
time of the system [1]. Actually, the activity and context
recognition system that operates in an opportunistic way
has to take advantage of the currently available devices in
order to execute the recognition task as accurate as possible.
Another crucial characteristic is that the recognition purpose
(i.e., recognition goal) is not fixed at design time of the
system, either. This goal can be rather defined by a user or
an application at runtime of the system [1]. Subsequently,
the currently available sensor devices (i.e., the sensing in-
frastructure) have to be queried, and the set of sensors has to
be identified that is able to contribute to the recognition goal.
According to such a recognition goal, the system configures
ensembles, which are (sub-)sets of available sensors that
are best suited to execute this specific recognition goal [2].
Since the sensor systems that are involved in such ensembles
are not presumably known, the system has to dynamically
handle changing sensor environments, which also includes
different modalities and types of sensors [3]. These charac-

teristics of an opportunistic activity and context recognition
systems allow the identification of application cases (see also
[4]): (i) sensor appears, (ii) sensor disappears, (iii) sensor
reappears, (iv) sensor delivers reduced-quality data, and (v)
sensor learns from other sensors.

This paper tackles the application cases (i), (ii), and (iii),
where sensors spontaneously appear, disappear and reappear
in the surrounding sensing infrastructure. The remaining two
application cases (iv) and (v), where on the one hand the
reduced quality data and on the other hand the enhancement
of sensor capabilities at runtime are considered have already
been subject of discussion and evaluation in recent publi-
cations (see [4] and [5]). The experiments and evaluations
that are contained in this paper try to answer the question
whether the developed concepts like sensor self-descriptions
(see [1][4][5]), that describe the sensor from a meta-level
with respect to the recognition capabilities for specific
goals and that enable the dynamic instantiation of activity
recognition chains, and the self-organization concepts that
enable the dynamic configuration of senor ensembles [5]
ensure a continuous, stable and highly accurate activity
recognition. Therefore, the paper utilizes a rich dataset that
was recently recorded in a kitchen scenario [6]. This allows
a high quality evaluation in a repeatable simulated setting
with a publicly available dataset. Furthermore, the same
setup is also evaluated in an experiment with physical sensor
systems to demonstrate the real-time capabilities of the
concepts and the OPPORTUNITY Framework, which is a
reference implementation of an opportunistic activity and
context recognition system together with the sensor self-
description and the ensemble configuration concepts.

The rest of the paper is structured as follows. Section II
provides an overview of related work. Section III provides a
detailed description of the opportunistic activity recognition
approach, whereas the main focus lies on the application
cases that build the core for further evaluations. Section IV
presents an experimental setup based on a rich dataset and
evaluates the stability and steadiness of the OPPORTUNITY
Framework in terms of dynamically configuring sensor en-
sembles according to a recognition goal. The last Section V
closes with a conclusion and an outlook.
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II. RELATED WORK

Activity and context recognition is a research topic that
has been tackled from different groups in the last years
and decade(s). Mantyjarvi et al. [7] and Bao and Intille
[8], present the principles of activity recognition with ac-
celeration sensors mounted on different parts of the body of
subjects. The recognition of human activities with a defined
set of sensors, with fixed (on-body) position and location
is evaluated and tested with different algorithms (see also
[9][10][11] as recent examples). The novelty of this paper
is the fact that the sensing infrastructure is not presumably
known by the system and thus has to react on spontaneous
changes to the availability of the surrounding sensors.

Concerning the characteristic application case of such an
opportunistic system where sensors that are involved in the
recognition process deliver faulty or quality-reduced data
(e.g., due to a low battery level), this anomaly can be
detected, as described in [1]. This approach is demonstrated
in the OPPORTUNITY Framework, which is a working
reference implementation of an opportunistic activity and
context recognition system, in [5]. There, a quantitative
measure called Trust Indicator was used to weight the
reduced data quality. The second application case that was
already demonstrated within the OPPORTUNITY Frame-
work is the crucial task of autonomously enhancing a single
sensor’s capabilities by observing an active ensemble. This
method (also referred to as transfer learning) is described
in detail in [12] and demonstrated in a running system and
tested with respect to real-time requirements in [4]. The
remaining characteristic cases that deal with the spontaneous
availability of sensors are the core subject of this paper.

Related work that concerns about activity recognition with
spontaneously changing sensing environments is - to our best
knowledge - very scarce. Approaches exist where sensors
are dynamically selected in order to find an accuracy-power
trade off [13], or where the activity recognition chain is
ported to a sensor platform and distributed to multiple nodes
in a wireless sensor network [14].

Chavarriaga et al. [15] present an approach that is derived
from an information theoretic concept, where available sen-
sors are dynamically picked with respect to the expected
recognition performance of the sensor aggregation. This
approach works with the diversity measurements of possible
classifier combinations and suffers from the known problem
that a ground-truth in the first place is inevitable. Villalonga
et al. [16] present a similar use case, where sensor ensembles
are configured and the expected recognition accuracy is
predicted. These publications are related in a way that not
all sensors that would be available are integrated in a sensor
ensemble for a specific recognition task but a subset of them,
which is optimized in terms of performance. Nevertheless,
this paper tackles the problem of handling spontaneous
changes in configured sensor ensembles.

III. OPPORTUNISTIC ACTIVITY RECOGNITION

Opportunistic activity and context recognition arises as
new working principle since sensor devices have recently
become more and more integrated into the daily life. This
shifted the effort from the application specific deployment
of sensors for specific recognition tasks to the utilization
of already available sensors. Therefore, in preceding publi-
cations, we have already introduced the concept of sensor
abstractions (see [1][3]), which enables the common usage
of material as well as immaterial devices as general type
sensor. This is an important feature in an opportunistic
system, since the sensor type and modality cannot be
predefined and thus has to be able to handle open-ended
sensor environments. The second important method that has
already been introduced in recent papers (see [1][4][5]) is the
concept of sensor self-descriptions. The standardized XML
documents are key components in an opportunistic system
and provide a two dimensional description of a sensor. The
description consists of (i) a technical part that describes
the physical working characteristics from the sensing device
(could be seen as transcript from the technical specification),
and of (ii) a dynamic part that encapsulates the sensor
capabilities in terms of recognizing activities. Both parts of
the sensor self-description are composed of SensorML [17],
which is an approved standard. Besides inevitable parts like
identifiers, information about the sensor’s position, and other
relevant information, the dynamic part of the sensor self-
description contains key elements that enable the handling
of dynamically changing sensor ensembles: ExperienceItems
(see also [1][4][5]). The ExperienceItems contain all re-
quired building blocks for a dynamic configuration of an
activity recognition chain for the dedicated sensor (i.e.,
(i) FeatureExtraction, (ii) Classifier, (iii) the accompanying
Classifier Model, and (iv) the expected/estimated accuracy
in form of the Degree of Fulfillment). ExperienceItems
are highly dynamic elements and can even be added or
modified by the OPPORTUNITY Framework at runtime of
the system. The application case ”Sensor Learns”, where
a sensor learns the recognition of a specific activity at
runtime was demonstrated in [4]. The sensor is able to
preserve experience (thus the name ExperienceItem), which
can be gathered by training the required machine-learning
technologies at system’s runtime by comparing the sensor
readings with the label output of available sensors that are
configured in ensembles. In [5], the application case ”Sensor
delivers faulty Data” was demonstrated, which also relies
on the capabilities of ExperienceItems to be dynamically
updated at runtime. This paper discusses and evaluates the
remaining application cases, ”Sensor appears”, ”Sensor
disappears”, and ”Sensor reappears”.

Especially the dynamic description with the Experien-
ceItems enables the dynamic configuration of ensembles
according to a recognition goal and permits the required
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Figure 1. Illustration of the system reaction to the two application cases
(i) sensor appears and (ii) sensor disappears.

stability, continuity and adaptability of the opportunistic
activity recognition. Whenever a new sensor appears in
the sensing environment, its accompanying (dynamic) self-
description is queried and read to be aware about the sensor’s
present capabilities and its utilization in currently active
ensembles. Upon the capabilities according to the dynamic
description, the system then decides on the further utilization
of the sensor, whereas four different possibilities can be
distinguished, as summarized in Figure 1: (i) the sensor
is integrated in a running ensemble, (ii) a new ensemble
is configured containing the newly appeared sensor, (iii)
the sensor’s current capabilities do not match an active
ensemble, thus the sensor cannot be used, and (iv) the
sensor yet does not have any recognition capabilities (i.e.,
ExperienceItems). Whenever the sensor is not integrated in
an ensemble, because the capabilities are not sufficient, or
not existing, the sensor could be a candidate to enhance its
capabilities by applying transfer learning [4][12]. In the case
the sensor was already online in the sensing infrastructure,
thus is already known by the system on re-appearance, the
querying and parsing of the self-description is obsolete. Nev-
ertheless, the four consequent options of further utilization
are equal to the aforementioned case (see also Figure 1).

When a sensor disappears - which is the third application
case of interest for this paper - three different subsequent
system steps have to be distinguished: (i) the sensor was not
involved in an active ensemble, therefore no further action is
necessary, (ii) the sensor was the exclusive component of an
ensemble, thus the execution of the recognition goal cannot
be continued, and (iii) the sensor was part of a bigger ensem-
ble, there the execution can be continued with a (probably)
reduced recognition rate (dependent on the disappearing
sensor’s performance). These application cases, which tackle
the spontaneous availability of sensors in an opportunistic
activity and context recognition system ((i) sensor appears,
(ii) sensor disappears, and (iii) sensor reappears) are tested
and evaluated in the OPPORTUNITY Framework in an
experimental setting that relies on a pre-recorded dataset [6]
where physical, on-body mounted sensor devices (see next
Section IV) are used.

Figure 2. The on-body sensors for the experiment. The setting is similar
to [4].

IV. EXPERIMENT SETUP AND EVALUATION

The OPPORTUNITY Framework [1] is a reference im-
plementation that realizes the aforementioned concepts of
sensor abstractions and sensor self-descriptions. Further-
more, it is capable of executing activity recognition in real-
time by applying different sensors, or to process repeatable
simulation runs with pre-recorded sensor data. Therefore, the
OPPORTUNITY dataset was recorded [6], which combines
72 sensors with 10 different modalities mounted on the
body of persons, on objects (e.g., cup, knife, etc.) and in
the environment (e.g., fridge, drawer, etc.) in a kitchen
scenario. Each of these sensors can be replayed in the
OPPORTUNITY Framework as PlaybackSensor [3], there-
fore act as it would be actually available. This allows the
generation of repeatable simulation scenarios for evaluation
and testing purposes. The experimental setting for this paper
is meant to demonstrate the three application cases that
tackle the sensors’ spontaneous availability ((re-)appear and
disappear). The chosen sensors are all mounted on the body
of the test person. The upper body is equipped with 5
sensors of type Xsens MTx, which provides 3D acceleration.
The sensors are located on both arms (right/left lower/upper
arm - RLA, RUA, LLA, LUA), and on the upper back
(BAC). The lower body is equipped with a self-composed
bluetooth acceleration sensor on the right knee (RKN) and a
SunSPOT (Small Programmable Object Technology) sensor
on the right instep of the foot (SHOE). All sensors were
operating with a sampling frequency of 100Hz and delivered
3D acceleration data (x-, y-, z-axes). The on-body sensor
placement is illustrated in Figure 2.

The challenge is to demonstrate and evaluate the continu-
ity and steadiness of the opportunistic activity and context
recognition system by dynamically adapting to different
conditions in the sensing infrastructure due to the sensors’
spontaneous availability. This is done by dynamic configu-
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Table I
OVERVIEW OF ACCURACIES OF THE SINGLE SENSORS FOR THE

RECOGNITION OF THE MODES OF LOCOMOTION.

Sensor RKN SHOE LUA LLA RUA RLA BAC

Accuracy 0.604 0.698 0.858 0.719 0.769 0.709 0.761

ration of different sensor aggregations in form of ensembles
over a certain amount of time. We decided to use a rather
simple set of activities since not the handling of complex
tasks is the major contribution but the accurate and stable
activity recognition even if the sensing environment changes.
The activities of interest in the exemplary scenario are
fixed to the modes of locomotion (i.e., WALK, STAND, SIT,
LIE). Each of the seven involved on-body sensors is trained
to recognize these four activities initially by utilizing the
available ground-truth in the dataset (as already mentioned,
the training could have also been done by applying the
transfer learning [4] approach, but to ensure that all seven
sensors have the same conditions, the initial training phase
was selected). As features the mean and variance were used,
the classification method was set to be the NCC classifier
(reasons for these choices are (i) the ease of computation
and (ii) the potentially good recognition results [18]). The
resulting accuracies for the single sensors were calculated by
comparing the predicted activity classes to the actual activity
classes after the training phase, and are listed in Table I.

Each sensor’s self-description was enhanced with an Ex-
perienceItem that contains every piece of information (in-
cluding the feature extraction method, the classifier method
together with the required and pre-trained classifier model
in form of a JSON file (see [5] for an example), and
the sensor position) to dynamically configure the activity
recognition chain at system’s runtime. The combination of
multiple sensors (respectively multiple recognition chains) in
the experiment session is done by applying MajorityVoting
fusion. This rather simple technology does not need to be
trained beforehand, thus can be utilized on the fly. The
class where most of the classifiers agree on is selected as
fusion result. The prediction of the output accuracy is not a
trivial task, in general the diversity measurements between
the involved classifiers must be known [15]. This is not yet
considered in this paper, but is an open point for future
work. In this experiment, each sensor that is capable of
contributing and recognizing the activities of interest (i.e.,
the four modes of locomotion) is integrated in the ensemble,
thus is part of the fusion method.

The experiment session lasted for exactly 14 minutes.
By mediating a change in the sensing infrastructure (i.e.,
in a simulated session, sensors of type PlayBackSensor [3]
can be turned on and off, thus simulating a (re-)appearance
and disappearance) different ensembles were configured. In
Table II, the thirteen occurring ensemble configurations are
listed together with their IDs, the involved sensor devices

Table II
OVERVIEW OF THE ENSEMBLE CONFIGURATIONS TOGETHER WITH THE

CALCULATED ACCURACIES.

ID Active Ensemble Accuray

1 RKN 0.604

2 RKN + LLA 0.630

3 RKN + LLA + SHOE 0.779

4 RKN + SHOE 0.488

5 RKN + SHOE + BAC 0.853

6 RKN + SHOE + BAC + LLA 0.840

7 RKN + SHOE + BAC + LLA + RLA 0.846

8 RKN + SHOE + BAC + LLA + RLA + RUA 0.817

9 RKN + SHOE + BAC + LLA + RLA + RUA + LUA 0.870

10 RKN + BAC + LLA + RLA + RUA + LUA 0.818

11 BAC + LLA + RLA + RUA + LUA 0.861

12 BAC + LLA + RLA + LUA 0.852

13 BAC + LLA + RLA 0.820

and the accuracy. This accuracy value was calculated by
comparing the predicted class as ensemble output with the
actual class that can be achieved from the ground-truth.
Before the simulated experimental run with the changes
in the sensors’ availability was done, each of the thirteen
ensembles was configured manually and the specific ses-
sion with the sensors was executed. This was necessary to
gather comparable confusion matrices for each of the listed
ensembles with the (approximately) same amount of sensor
samples and predicted activities. These confusion matrices
are illustrated in Figure 3. Each matrix is assigned with
the ID from the ensemble (as listed in Table II), and the
resulting accuracy. This accuracy can be easily computed
out of the confusion matrices, since the main diagonal
indicates the correctly predicted classes, the other values
the wrong classified activity labels. Each confusion matrix
contains on the x- and y-axis the activity class numbers (i.e.,
1=NULL, 2=STAND, 3=WALK, 4=LIE, 5=SIT). During each
run (i.e., 14 minutes) the confusion matrices were filled with
approximately 500.000 activity classes (this makes approx.
600 classes per second). This means at each second, 600
comparisons from the predicted label to the actual ground-
truth label were done to get a significant matrix as base for
the calculation of the accuracy.

After the preparation was done (all ExperienceItems gen-
erated, the accuracies of the single sensors and of the
ensembles calculated), the experimental session was con-
ducted. Figure 4 presents an overview of the actual accuracy
of the configured sensor ensembles for the recognition of
the modes of locomotion. The x-axis indicates the time in
minutes, but also the ID of the active ensemble (e.g., at
minute three, the available sensors were mediated to be
RKN, LLA, and SHOE). The y-axis contains the accuracy
of the active sensor ensemble. As shown, the accuracy and
thus the recognition continuity are robust against changes
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Figure 3. Confusion matrices for the 13 sensor ensembles in the experimental session (the x-axis contains the actual activity class, the y-axis the predicted
class). The numbers above each single confusion matrix contain the ensemble ID and the corresponding accuracy compared to the ground-truth.

Figure 4. Overview of the accuracies for the occurring ensemble
configurations during the experiment session.

in the sensing infrastructure. Based upon the sensor self-
descriptions, the system is capable of dynamically adapt-
ing to changes in the sensing environment and ensures a
continuance of the activity recognition task. This dynamic
adaptation to changes in the sensing environment and the
resulting stability is a novelty in contrast to conventional
activity recognition systems.

V. CONCLUSION AND FUTURE WORK

This paper presented the three characteristic application
cases sensor appears, sensor reappears, and sensor disap-
pears for an opportunistic activity recognition system. The
OPPORTUNITY Framework realizes the concepts of sensor
self-descriptions. These XML documents are of highly dy-
namic nature, since they encode the sensors capabilities in

order to recognize certain activities. A sensor can make ex-
perience over its life-time (e.g., by manually or autonomous
adding of recognition capabilities) and preserve this expe-
rience in its self-description in so-called ExperienceItems.
Each of these items contains a complete description of an
activity recognition chain (i.e., feature extraction, classifi-
cation and classifier model), together with QoS metrics,
like the estimated recognition accuracy. The capability of
the OPPORTUNITY Framework to dynamically adapt at
runtime to spontaneous changes in the sensing environment
is demonstrated in this paper. This enables an accurate,
stable and continuous recognition of human activities with
dynamically varying sensor settings and can be seen as
important building block towards the vision of opportunistic
activity and context recognition. This is a novelty in contrast
to conventional activity recognition system, since they would
fail if sensors disappear, or would not consider new sensors
on their appearance.

Concerning future work, one issue is how multiple sensors
can be combined to achieve a higher recognition accuracy.
The solution so far is to use diversity measures between
the sensors. Subsequently, this needs a reliable ground-
truth for calculation, which cannot be taken as granted in
a real-time application. Nevertheless, to be able to provide
an estimation of the accuracy of an ensemble (with the
MajorityVoting fusion method) these measures are required,
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since the danger is that multiple sensors classify the same
wrong predicted class, which is then taken as winning fusion
result. Currently, work is going to calculate these diversity
measures at runtime of the system, and preserving this
information additionally in the sensor self-descriptions (at
least the diversity measures between two sensors without
the comparison to the ground-truth).

ACKNOWLEDGMENT

The project OPPORTUNITY acknowledges the financial
support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open
grant number: 225938.

REFERENCES

[1] M. Kurz, G. Hölzl, A. Ferscha, A. Calatroni, D. Roggen,
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