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Abstract—Evermore highly adaptive hardware toolkits be-
come available, of which the applications are configured, fine-
tuned or even created altogether by their end-users. To support
these users, we need to think about flexible, yet accessible
frameworks with which these end-users can adapt applica-
tions to their personal needs. We present a programming
framework, called ESPranto, which strives exactly to do so.
ESPranto is basically Esterel extended with funcros. Esterel
is a reactive programming language suited for programming
control-dominated applications. Commands can be executed in
parallel and parallel commands can communicate. Contrary
to most language, the Esterel compiler automatically proves
that programs will never cause run time problems such as
deadlocks, race conditions or crashes. Because Esterel does
not have very strong abstraction mechanisms we added funcros.
Funcros are functional macros. Like macros, they are statically
expanded when applied to actual arguments. Unlike macros,
funcros are type safe and hygienic (local declarations are
renamed during expansion, to guarantee that there are no
collisions with existing identifiers). Funcros can be recursive
and higher-order in the sense that they take funcros as
parameters and return funcros as results. One can also apply
them partially, by providing less actual parameters than formal
parameters. In addition, we added a polymorphic type system
to Esterel, to allow funcros to be polymorphic and hence make
ESPranto more expressive, while maintaining type safety. These
extensions allowed us to use ESPranto as a host language for
embedding several domain specific languages. The languages
were specifically designed for developing reactive applications
for a storytelling environment called StoryToy and for a
tangible interaction tablet called TagTiles. The macro-like
properties allowed us to keep the useful features of Esterel
described above. The functional properties allowed us to use
ESPranto to facilitate end-user programming: our end-users
use ESPranto to adapt and extend applications to their own
needs.

Keywords-adaptive systems; computer languages; parallel
programming; functional programming.

I. INTRODUCTION

Recently the world has seen a huge rise in commer-
cially available, highly adaptive hardware toolkits, such as
the iCat [1], Arduino [2], Phidgets [3] and Lego Mind-
Storms [4]. Whereas in classical computing a rather fixed
number of applications suffices for most users, for these
toolkits the applications are configured, adapted or even
created altogether by end-users. These application creators
may be non-technical domain experts – for instance experts

Figure 1. StoryToy

in human robot interaction that use these products for
their research [1] – or laymen, such as technical hobbyists,
children, teachers or parents [2].

Enabling all these users to easily adapt such hardware
to their own needs, whist giving them access to all func-
tionality, is a daunting task, but some attempts are being
made [1]–[3]. However, we still face the issue that adaptation
frameworks that are powerful and truly accessible to non-
technical users hardly exist for such hardware toolkits.

This paper describes the development and usage of the
programming language ESPranto. We apply ESPranto es-
pecially to embed domain specific languages (DSLs) used
by end-users to fine-tune or create applications for adaptive
hardware toolkits. We called the language ESPranto because
it is a language for “Edutainment Sensor Platforms (ESPs)”
and because it strives to be applicable to a diverse class of
users.

One toolkit for which the language is used is StoryToy [5]
(Fig. 1). A second system is TagTiles [6] (Fig. 2), marketed
by Serious Toys [7].

StoryToy is a toolkit for creating storytelling applications.
These applications can entertain and promote the develop-
ment of young children (2-6). The child implicitly provides
input to the system by shaking fluffy farm animals, thus
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Figure 2. TagTiles

guiding the plot of the story. Lighting support is available
for drama. For example, one created application was set in a
thunderstorm, featured lightning effects. We have found that
laymen users, such as parents or teachers, enjoy adapting
StoryToy to specific children by making personal applica-
tions (stories) for them [8].

TagTiles is a tangible interface console designed for
educational board games (Fig. 2). It features an antenna
grid that identifies and localizes objects tagged with RFID
tags on the two-dimensional surface. For providing feedback,
every grid cell is equipped with a full color LED and the
board can produce audio like speech, sound effects or music.
Also, the console is equipped with an embedded computer.
Non-technical domain experts, e.g., psychologists, are using
TagTiles in their research [6], [9]. Also TagTiles applications
can be adapted by teachers for usage in their classrooms [8].

Before creating the ESPranto language, we conducted
a series of studies in which domain experts and laymen
were asked to design a range of applications for adaptive
hardware such as StoryToy and TagTiles [8]. We found
that participants tend to describe these applications as ‘story
lines’ that develop in parallel. Each story line is described
sequentially and in some cases must be preempted (i.e.,
aborted). Furthermore, the application domains the different
users came up with were very diverse [6], [9], [10]. Domain
experts and laymen indicated that they want to spend as
little time as possible addressing technical issues. From these
sessions, we concluded that ESPranto needed the following
features:

1) To keep the language close to the users’ mental
model, parallelism, sequencing and preemption must
be supported.

2) ESPranto must enable embedding of a multitude of
domains.

3) Errors must be given in terms of the end-user’s do-
main.

4) Run time problems such as crashes, non deterministic

behavior, or deadlocks must be prevented.
Implementing ESPranto as an Esterel-like language

seemed an obvious choice: Esterel supports parallelism
and preemption [11], meeting requirement 1. Also, Esterel
applications will never cause run time errors, meeting re-
quirement 4. However, we argue that Esterel per se is not
suitable for implementing DSLs because it lacks crucial
abstraction mechanisms, needed for requirement 2 and 3.
Many DSLs have been successfully implemented in modern
functional programming languages that do provide those
crucial abstraction mechanisms.

To meet all requirements, we designed ESPranto as a
subset of Esterel, extended with the required features from
functional programming. ESPranto is based on the concept
of ‘funcros’. Funcros are like functions in functional pro-
gramming and at the same time like macros. Because of
the power of funcros, ESPranto maintains the core benefits
of Esterel but introduces the benefits of functional pro-
gramming, thus making it suitable for embedding DSLs for
tangible applications. We have embedded a series of DSLs in
ESPranto and these DSLs are successfully used by domain
experts to create tangible applications.

The remainder of this paper is structured as follows.
In Section II, we go deeper into DSLs and explain how
they are embedded into functional programming languages.
Section III gives a basic introduction into reactive pro-
gramming in Esterel. Section IV describes previous work
on combining reactive programming with functional pro-
gramming. In Section V, we explain how ESPranto can be
translated into Esterel, yet unleashes the power of functional
programming through funcros. In Section VI, we provide
examples of DSLs that are embedded in ESPranto and show
how ESPranto’s features are applied by non-technical end-
users to create and adapt applications. We will use examples
of TagTiles applications, because they are most advanced
and are indicative of ESPranto’s strength. In Section VII,
we present our conclusions.

II. DOMAIN SPECIFIC LANGUAGES

Mainstream programming languages (like C and Java)
do not enable domain experts who are not professional
programmers to adapt applications. Therefore, DSLs have
been designed, which enable domain experts to develop ap-
plications for their particular domain quickly and effectively,
yielding programs that are easy to understand, reason about,
and maintain by the domain experts themselves [12].

Designing a programming language from scratch is diffi-
cult and time-consuming. Effort is wasted, since large parts
of many DSLs are not domain specific at all. For instance,
many require a type system and a sub-language for integer
and Boolean expressions. For these reasons, language de-
signers often embed a DSL as a library into an existing host
language. Because a Domain Specific Embedded Language
(DSEL) inherits features from its host language, the chosen
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host language must be flexible enough to allow for a natural
embedding of the DSL, and its features must be suitable for,
or at least not at odds with, the properties of the domain.

Modern functional programming languages are often a
sensible choice when crafting DSELs for creating desk-
top computing applications; examples are abundant [12].
Functional languages provide good abstraction mechanisms
due to polymorphic type systems and, as an alternative to
statements, the flexible concept of functions. For example,
polymorphic functions allow to define generic statements.
Higher order functions allow to pass statements as param-
eters, allowing for yet stronger abstractions. Partial func-
tion application allows to use specialization, by defining a
function in terms of another function with only some of its
parameters provided. For instance, a function inc can be
defined as (+) 1.

III. ESTEREL

Although it is generally easy to embed DSLs in functional
programming languages, functional programming per se is
not suitable for embedding DSLs for tangible computing:
functional programs cannot be checked for causal correct-
ness, are not real-time and not optimal for resource con-
strained systems. Reactive programming languages provide
these features, but lack flexibility. Before describing how
we combined both paradigms, we will first give a basic
introduction into Esterel by discussing some examples. For
a full explanation of Esterel we refer to [11].

Esterel is based on the two basic concepts of commands
and signals. Commands describe control-flow and signals
are used for communication with hardware or between
commands.

An external control loop is in place that decides when
the Esterel program is allowed to execute; usually when the
underlying hardware has detected some physical event or
when a predetermined amount of time has passed. Then,
the Esterel program computes a reaction, typically in a
very short amount of time, and pauses again. One such an
iteration is called an instant. When the control loop decides
to run the next instant, the Esterel program will resume
execution at the point at which it stopped in the previous
instant.

In every instant, for every signal it holds that that signal
is either present or absent. With this feature Esterel provides
causal correctness, which means that race conditions cannot
occur because all communication within an instant appears
to be instantaneous.

Esterel is crafted such that an instant always runs in a
finite amount of time. Because of this feature, Esterel is
a real-time programming language. This requires that all
commands that wait for some event to happen end the
current instant and pass control back to the control loop.

After giving a few introductory examples, we will briefly

//Declaration of signals
input ButtonPress
output SoundBell

//The control code itself:
await ButtonPress;
emit SoundBell

Figure 3. Esterel program controlling a doorbell

discuss the implications of causal correctness and real-
timeness.

A. Controlling a simple machine

A trivial example of an Esterel program is given in
Figure 3. This program controls a simple doorbell. The
program will make the bell sound once when the button
is pressed and then terminate.

The program has two signals. ButtonPress is an input
signal that describes the state of a sensor: when the button is
pressed the control loop sets the signal to present and then
makes the Esterel program run for one instant. SoundBell
is an output signal: after the Esterel program has run for
one instant, the control loop decides to sound the bell or not
depending on the presence of this signal.

When the external control loop makes this program react
for the first time, it will immediately end the instant because
control reaches the await command. Hence, in the first
instant the output signal SoundBell is absent, meaning
that the external control loop should not sound the bell.

When the control loop makes the program react for the
second time, it will resume at the point where it stopped in
the first instant; i.e., at the await command. Two things
can happen, depending on the presence of the input signal
ButtonPress. If ButtonPress is absent, the program
will immediately end the instant again, as it is waiting
for an instant in which ButtonPress is present. When
an instant is run in which ButtonPress is present, the
await command terminates and the program continues and
emits SoundBell. Since that is the last command of the
program, it will then terminate. The control loop reacts to
the presence of SoundBell by ringing the bell.

B. Parallelism and communication

The example given in Figure 4 controls a more advanced
doorbell and uses parallelism and communication. In this
example, the doorbell has two buttons and has two differ-
ent melodies. The program turn-wise plays one of these
melodies when button 1 and/or button 2 is pressed, but it
will never interrupt a playing melody.

We have introduced an input signal MelodyDone that
the control loop will set to be present in every instant in
which a melody has just stopped playing. The program has
three loops. The three loops will run in parallel because
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input Button1Press
input Button2Press
input MelodyDone
output PlayMelody1
output PlayMelody2

signal GenerateOuput in
loop

await Button1Press;
emit GenerateOutput

end loop
|
loop

await Button2Press;
emit GenerateOutput

end loop
|
loop

await GenerateOutput;
emit PlayMelody1;
await MelodyDone;
await GenerateOutput;
emit PlayMelody2;
await MelodyDone

end loop
end signal

Figure 4. A more advanced doorbell

they are combined with the parallel operator |. The loops
communicate through the local signal GenerateOutput.

The upper loop waits for an instant in which
Button1Press is present. In such an instant, it will
emit GenerateOutput and then restart the loop again.
Restarting the loop will cause the upper loop to end for this
instant, because of the await command. The second loop
reacts likewise on the presence of Button2Press.

The third loop waits for an instant in which the lo-
cal signal GenerateOutput is present. In the first in-
stant in which that happens, it will react by emitting
PlayMelody1. The program will then wait until the
melody has stopped playing. This prevents the program
from ever starting a new melody when a melody is already
playing. Only after the melody has stopped, it will wait for
an instant in which GenerateOutput is present again and
then react by emitting PlayMelody2. When that melody
has finished, the third loop will be restarted and wait again
for GenerateOutput.

C. Implications of causal correctness and real-timeness

In Esterel writing such control-dominated programs is
easy: separate parts of the program can be defined separately

signal S in
if S
then nothing
else emit S

end if
end signal

Figure 5. Causally incorrect Esterel program

and composed in parallel, parallel commands can commu-
nicate through signals but race conditions will not occur,
no variables are needed to keep track of the state of the
program and the program will never deadlock because all
instants will always end after a finite amount of time.

In imperative languages such as C, or functional languages
such as Haskell, writing a similar program correctly is more
difficult.

One approach would be to use asynchronous multi-
threading and shared memory. This would require the pro-
grammer to synchronize when accessing the shared memory
to prevent race-conditions, and to prove that deadlocks will
not occur due to this synchronization.

Another approach would be to use event-handling proce-
dures that are called when the buttons are pressed or when
a melody has finished playing. In that case, one would need
to introduce variables to keep track of which melody is
currently playing, if any. The programmer would need to
think about all possible interleavings of events by himself,
which can be difficult. Furthermore, the programmer would
have to construct a proof that the event-handling procedures
always terminate such that new events can continue to be
accepted from the hardware.

D. Incorrect programs

The Esterel compiler rejects programs of which causal
correctness cannot be proved. An example of such an
erroneous program is given in Figure 5. The program is
erroneous, because we cannot decide on the presence of S:
if S is absent in the instant in which this program is started,
S has to be emitted which means that it is present in that
instant. Conversely, when S is present in the instant in which
this program is started, it is never emitted, which means that
it is absent in that instant.

Another example of an incorrect Esterel program is given
in Figure 6. This program is causally correct, but still
erroneous because the body of the loop does not contain
any command that ends the instant. This means that we
cannot establish a finite run time for the instant in which
the loop starts, and therefore the Esterel compiler will reject
this program. A correct version of this program pauses after
emitting S. The command pause ends the current instant
and terminates immediately in the next instant.
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//Erroneous program
signal S in

loop
emit S

end loop
end signal

//Correct program
signal S in

loop
emit S;
pause

end loop
end signal

Figure 6. Esterel program with instantaneous loop

E. Limitations

Although Esterel provides very strong correctness prop-
erties, it provides few abstraction mechanisms. It is not pos-
sible to define functions or procedures. If such mechanisms
were in place, the Esterel compiler could not automatically
check for causal correctness, nor check that every instant
has finite run times, because this is undecidable for Turing
complete languages [13].

Some modularity can be achieved through a mechanism
called modules, which are textually expanded. Modules can
only be parametrized with signals and not with commands
or other modules, nor can they be applied recursively or
partially.

IV. COMBINING FUNCTIONAL AND REACTIVE
PROGRAMMING

As functional programming provides flexibility, and
reactive programming provides causal correctness and
real-timeness, ESPranto strives to combine best of both
paradigms such that it can be used to embed DSLs for
tangible computing.

A combination of functional programming with reactive
programming was first proposed in Lucid Synchrone [14], a
language that extends OCaml with some concepts borrowed
from a data-flow synchronous language Lustre [15]. There
are two main differences between Lucid Synchrone and
ESPranto.

The first main difference is that our combination uses
a different order in which the one programming paradigm
extends the other. Unlike Lucid Synchrone, we extend a
synchronous language with some concepts borrowed from
functional languages. This difference has two important con-
sequences. First, for our class of users, the reactive program-
ming paradigm is much more natural than the functional
one (requirement 1). Therefore ESPranto allows novices to

/* ESPranto program */
main = (switch true)
switch c = (if c then pause else halt)

/* Esterel translation */
if true then pause else halt

Figure 7. A trivial ESPranto program and its Esterel translation

start with reactive programming, and later on learn to fully
use the additional functional features funcros provide for
their convenience. This is of the utmost importance when
dealing with application developers who are not professional
programmers. Second, we can reduce substantially the run-
time resources required to execute ESPranto programs, com-
pared with Lucid Synchrone. We first compile ESPranto
programs to Esterel, by expanding funcro applications, and
then compile Esterel to assembly code. In the approach taken
by Lucid Synchrone, programs are first expanded to OCaml,
and then compiled by the OCaml compiler. This approach
requires a much larger execution footprint, especially in
terms of memory due to the need for garbage collection,
which is inherent to functional programs.

The second main difference is that ESPranto incorporates
an imperative synchronous language while Lucid Synchrone
incorporates a declarative one. Again, this is easier to
understand for our users, as sequential composition must
be a basic combinator in our language (requirement 1). The
data-flow paradigm, on which Lustre is based, is not well
suited to describe imperative control flow.

V. ESPRANTO

A. Funcros

Every funcro is a tuple of a name, a series of zero or
more formal parameters and a body. Funcros can be applied
by providing them with actual parameters. The ESPranto
compiler expands a funcro with all its actual arguments
into basic Esterel statements. A trivial example of how this
works is shown in Figure 7. Expansion always starts at the
funcro called main. For the reader unfamiliar with Esterel,
an overview of the most important basic statements is given
in Appendix A.

When expanding a funcro application, formal parame-
ters are substituted for their values. From this perspective,
funcros are like macros as available in languages like C.
ESPranto uses expansion (like macros) instead of dynamic
application (like functions) to substantially simplify the
causal correctness problem. If we used functions, but still
wanted to keep Esterel’s strong correctness properties, we
would be faced with the problem of compositional verifica-
tion of causal correctness. We are not aware of any method
that solves that problem.
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#define INC(i) {int b = 17; ++i;}
void weird () {

int a = 0; int b = 0;
INC(a); // a becomes 1.
INC(b); // b remains 0.

}

Figure 8. Unhygienic macro expansion in C

Unlike C macros, funcros are type safe, hygienic, and
ESPranto supports recursion, higher order funcros, and par-
tial funcro application.

B. Type safety

The ESPranto compiler automatically infers the type
of each funcro, using the Hindley-Milner type inference
algorithm [16]. Before expanding a program into Esterel
code, it checks if all funcro applications are type correct.
If the program is type incorrect, the compiler will provide
feedback on this to the user. Because types are checked
before funcro expansion, the compiler gives feedback in
terms of the domain specific funcros, and not in terms of the
Esterel code. This is needed to meet requirement 3. Only if it
is type correct, the compiler will produce the corresponding
Esterel program that can be compiled into machine code
in the next step. The main funcro must always have type
Command, i.e., it must expand to a valid Esterel command.

For the code segment of Fig. 7, the compiler infers that
switch :: Condition → Command (:: should be
read as has type, in other words switch takes a
Condition as a parameter and then unfolds into a
Command) because c is used as a condition in its body
and because its body unfolds into an if-statement. Likewise
the compiler infers that main :: Command, making the
example program type correct.

C. Hygienic expansion

A known problem with ‘naive’ macro expansion systems
is that identifiers may collide. Languages featuring such
macro expansion systems are called ‘unhygienic’ [17]. An
example is the C programming language (see Fig. 8).
Programmers typically try to solve hygiene problems by
obfuscation: use only unusual variable names in macros and
hope that the same names will never be used in the rest of
the program.

Obfuscation is not a suitable solution for ESPranto. It is
a delicate and error prone method that requires the domain
expert to inspect all used funcros. Instead, ESPranto has
two features that together prevent hygiene problems. The
first feature is scope: identifiers such as signals or traps are
scoped within the funcro in which they are declared. They
can be used outside their declaring funcros only by passing
them explicitly as parameters to other funcros.

/* ESPranto code */
main = (
trap T (

myFuncro T //Explicitly pass T
)

)
myFuncro TrapLabel = (
trap T (
exit TrapLabel

)
)

/* Esterel translation */
trap T_0 in
trap T_1 in

exit T_0
end trap

end trap

Figure 9. Example showing ESPranto’s hygienic transformation

The second feature is the manner of transformation into
Esterel code, in which Esterel identifier clashes are prevented
by augmenting signal and trap labels with their call depth.
The call depth is defined as the number of funcro appli-
cations in which the currently expanded funcro application
is nested. The call depth of main is 0, and subsequently
increases when calls are nested. Examples of how this works
are given in Fig. 9. Note how the trap label in the exit
statement is augmented with call depth 0 in the Esterel
transformation, correctly referring to the outer trap.

D. Recursive funcro definitions

Most programming languages do not support recursively
defined macros, because naively substituting macro ap-
plications with their expanded bodies would lead to an
infinite amount of expanded code for recursive definitions.
However, recursive functions is one of the essential features
of functional programming that we wanted to include in
ESPranto. We resolved this issue by allowing programmers
to define alternative expansions of a funcro, guarded by
patterns. For each funcro application, the compiler matches
actual parameters against the patterns of the alternatives.
For instance, the pattern i, where i is an identifier, matches
against any parameter, the pattern {} matches only against
an empty list, and the pattern p1:p2, where p1 and p2 are
patterns, matches only against a non-empty list, if the first
element of that list matches against p1 and the remainder of
the list against p2.

It is still possible to define recursive funcros that generate
an infinite amount of code when they are expanded. An
example is given in Fig. 10. We are currently investigating
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/* ESPranto code */
length (h:t) =

(1 + length (h:t)) // Wrong!
length {} =

(0) // Non-recursive alternative

//This expansion will not terminate:
main = (

if length {1,2,3} = 3
then nothing
else nothing

)

/* ESPranto code */
length (h:t) =

(1 + length t) // Right
length {} =

(0) // Non-recursive alternative

//This expansion will terminate:
main = (

if length {1,2,3} = 3
then nothing
else nothing

)

Figure 10. Example showing recursive funcros

if we should restrict the class of allowed recursive funcros.
A possible restricted class can be those funcros of which the
compiler can prove that all their possible applications will
generate a finite amount of code. A first idea is to allow
catamorphic [18] recursive funcros only, as applying such
funcros always terminates. Catamorphic funcros break down
a data structure in their recursion, and have a non-recursive
alternative for ⊥. With such a restriction, the compiler would
indeed reject the first program in Fig. 10, and allow the
second. Similar restrictions have been successfully applied
before, for instance in the Agda programming language [19].

E. Syntax of ESPranto

For clarity, we present an excerpt of the grammar of
ESPranto in Fig. 11. For clarity, the excerpt is heavily sim-
plified. Important to note is that in ESPranto, an expression
can be an Esterel literal, a funcro application, or an identifier
bound through a pattern of a formal parameter. A complete
description of the Esterel syntax can be found in [11].

VI. EMBEDDING DOMAIN SPECIFIC LANGUAGES IN
ESPRANTO

We have successfully embedded multiple DSLs in
ESPranto, each for intrinsically different domains, includ-

<funcrodef> ::= <identifier> <patterns>

= (<expr>)

<pattern> ::= <identifier>

| <pattern> : <pattern>

| {}

| etc

<expr> ::= <esterel>

| <identifier>

| <funcroapp>

| etc

<esterel> ::= nothing

| pause

| true

| false

| <number>

| <expr> ; <expr>

| <expr> | <expr>

| <expr> && <expr>

| <expr> + <expr>

| etc

<funcroapp> ::= <identifier> <exprs>

Figure 11. Simplified syntax of ESPranto

ing physio-therapy, [9] and games that use concepts from
geometry [10].

To demonstrate how ESPranto’s features facilitate end-
users to adapt and extend applications, we will go deeper
into one DSEL. This DSEL is created for a set of related
exercises for the TagTiles console, that are, somewhat con-
fusingly, called TagTiles Classic [6].

A. The domain of TagTiles Classic

The goal of TagTiles Classic was to create fun, ed-
ucational exercises for children, which address cognitive
and motor skills. In the vocabulary of the domain expert
(psychologist), TagTiles Classic consists of a series of tasks
and each task consists of a series of levels. All levels in
TagTiles Classic start with displaying an assignment pattern
by lighting up cells in particular colors on the TagTiles
board. They then require the child to indicate a solution
pattern by tagging cells with colored game pieces. The
tasks differ in how the child has to work out the solution
pattern from the assignment pattern. A particular set of
tasks targets training spatial insight. For instance, in the
translation task the child has to translate assignment patterns
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//Global signals
signal LevelFinished
signal RestartLevel
level body = (

abort SkipLevel (
trap LevelFinished (

loop (
abort RestartLevel (

body;
exit LevelFinished

) ) ) )
;
putBackThePieces

)
putBackThePieces = (

... /*some code*/
)

Figure 12. Example of parametrization in the TagTiles DSEL

4 cells horizontally. In the mirror task, the child has to create
the symmetric counterpart of assignment patterns.

A programmer has embedded a DSL for these exercises
into ESPranto and created a basic set of exemplary exercises.
The psychologist then adapted this to her own needs, by fine-
tuning the way the different tasks work, by adding extra tasks
and by working out many levels for each task.

B. Capturing the essence of levels with parametrization

The domain expert wanted all levels to have some com-
monalities, specifically:

1) when playing a certain level, it must be possible to
skip that level;

2) when playing a certain level, it must be possible to
restart that level;

3) at the end of each level, the child must put the pieces
back into a starting position.

The programmer captured these commonalities in the
DSEL by introducing a funcro level (Fig. 12), which
is parametrized with a command body that contains the
control code for a specific level. The compiler infers that
level :: Command → Command: if the domain expert
applies this funcro and passes it a command, level will
augment it with the common functionality of levels.

C. Using recursion in TagTiles

In the memory task every level first displays the assign-
ment pattern for two seconds. Then the board is cleared
and the child has to reconstruct the pattern from memory
by tagging the correct cells. The child can reconstruct the
pattern in any order. As he reconstructs the pattern, the cells
light up again. Both the code for displaying the assignment
pattern and for lighting up the solution pattern as the child

drawTiles {} = (nothing)
drawTiles (coord:cs) = (
drawTile coord;
drawTiles cs //catamorphic recursion

)
awaitAndDrawTiles {} = (nothing)
awaitAndDrawTiles (coord:cs) = (
( awaitTile coord;
drawTile coord

)
| awaitAndDrawTiles cs // catamorphic

)
memoryLevel coords = (
level (
drawTiles coords;
waitTime 2000;
clearBoard;
emitSound "pling.wav";
awaitAndDrawTiles coords

) )

Figure 13. Using recursive definitions for the TagTiles DSEL

reconstructs it can be neatly defined in ESPranto through
recursion (see Fig. 13). Both funcros are defined recursively
over a list. The funcro drawTiles takes a (static) list and
creates a sequence of commands that each draw one cell.
The funcro awaitAndDrawTiles takes a (static) list and
waits for the child to put the right game piece on each
coordinate and then illuminates that coordinate. Note how
parallelism is used in awaitAndDrawTiles to allow the
child to tag the cells in the solution pattern in any order.

D. Higher order funcros and partial application

The levels of the tasks addressing spatial insight share
further commonalities. E.g., both in the mirror task and in
the translation task, in every level the assignment pattern is
displayed for two seconds, then the TagTiles board is cleared
and the child has to recreate the solution pattern by applying
the correct mathematical transformation; e.g., mirroring or
translation. Figure 14 shows how we managed to cap-
ture these commonalities in the spatialInsightLevel
funcro, that takes the mathematical transformation as its
parameter f, and takes a list of coordinates coords. Hence,

spatialInsightLevel :: (Coord→ Coord) →
{Coord} →
Command

where {Coord} should be read as: list of which the
elements have type Coord.

Since spatialInsightLevel takes a funcro as its
first parameter, it is of higher order. Likewise, map is
a higher order funcro. The funcros mirrorLevel and
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/* Defined in a library */
map f {} = {}
map f (e:l) = {f e : map f l}

/* Defined for the DSEL of TagTiles */
spatialInsightLevel f coords = (

level (
drawTiles coords;
waitTime 2000;
emitSound "pling.wav";
awaitAndDrawTiles (map f coords)

) )

mirror coord = (...)
/* takes a coord and mirrors it

point-symmetrically w.r.t
the center of the TagTiles board */

translate coord dx dy = (...)

/* Defined by the domain expert */
mirrorLevel = (

spatialInsightLevel mirror
)
translationLevel = (

spatialInsightLevel (translate 4 0)
)
mirrorLevel1 = (

mirrorLevel coords1
)
coords1 = (...)

//Some list of coordinates

Figure 14. Using higher order funcros and partial application for the
TagTiles DSEL

translationLevel are partially applied funcros: they
feed a first parameter to spatialInsightLevel and
hence both have type {Coord} → Command. The funcro
mirrorLevel1 is exemplary for how the domain expert
finally defines a level by feeding a list of actual coordinates
to mirrorLevel, resulting in a command.

VII. CONCLUSIONS

We created ESPranto to alleviate the problems domain
experts face when adapting and creating applications for
adaptable hardware. ESPranto has proven to be a valuable
framework to host DSLs for various adaptable hardware
toolkits, for instance StoryToy and TagTiles, which is a
tangible interface for educational board games. ESPranto
enables the creation of a new domain specific language
(DSL) when needed (for example, for a new type of game),
with relatively low effort.

We have embedded several DSLs in ESPranto. Domain
experts and laymen with no prior programming experience

use these DSLs successfully to adapt and extend applications
to their own needs.

We designed and implemented ESPranto as a program-
ming language that combines reactive and functional pro-
gramming by extending the reactive programming language
Esterel with funcros and polymorphic types. Funcros are
statically expanded similarly to macros. However, like func-
tions, funcros are strongly typed, can be recursive, higher-
order, and applied partially.

During compilation, an ESPranto program is expanded
to an Esterel program which can then be checked for causal
correctness using standard Esterel techniques. Using funcros
(expanded during compile time) instead of functions (called
at run time) allows us to verify causal correctness.

As such, ESPranto combines the prevention of runtime
problems such as deadlocks or race-conditions that reactive
programming offers, with the strong abstraction features that
functional programming offers, making it very suitable for
novice programming.

APPENDIX

Statement Meaning
nothing Terminates immediately
pause Terminates in the next instant
emit S Signal S is present in this instant.

Terminates immediately.
loop p Starts p. In the instant in which p terminates

p is started again.
halt Equal to loop pause
await c Terminates in the next instant in which

c holds.
if c Starts p if c holds, q otherwise.

then p
else q

Starts p. Terminates in the instant in
trap T p which p terminates, or in the first

instant in which p executes exit T .
Starts executing p. Terminates in the

abort c p instant in which p terminates, or in the
next instant in which c holds.

p; q Sequential composition. Starts executing p.
In the instant in which p terminates, starts
executing q. Terminates in the instant in
which q terminates.

p | q Parallel composition. Starts executing p and
q. Terminates when both p and q have
terminated.
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