
 
 
 

 
 

 
 

 

 

Abstract - Reliability concerns in state-of-the-art 
electronic systems have led researchers and engineers to 
develop innovative real-time prognostics and adaptive 
health management methods to assure desired 
availability.  Prognostics techniques described here use 
a novel concept of canaries, along with data analysis, 
failure mechanism models and integrated fusion 
techniques to determine the remaining useful life of a 
system. A canary is a device that provides data to 
generate early warning of functional degradation and 
impending functional failure.  Three types of canaries 
are discussed.  Expendable canaries experience 
accelerated degradation (compared to functional 
degradation) by design, so that early warning of 
impending failure can be generated.  Sensory canaries 
provide early warning by observing nonfunctional 
manifestation of functional degradation.  
Conjugate-stress canaries provide measurement of 
life-cycle stress history so that failure models can be used 
to estimate consumed life and remaining life.  This 
paper focuses on expendable canaries, in particular, and 
provides three examples to illustrate the underlying 
design concepts.  

Keywords – canary; electronic systems; failure 
mechanisms; precursors; prognostics; reliability; 
remaining useful life. 

I. INTRODUCTION 
 Cost effective methods for assuring high availability and 
safety are a key need in many critical electronics-rich 
systems, such as in medical devices, military products, 
aviation controllers and avionics, information management 
systems and in energy generation and distribution systems, 
especially in nuclear power plants [1]. Functional failure of 
such critical products during performance in the field can 
have catastrophic and costly consequences.  The prevention 
of failures in cutting-edge electronics is very challenging 
because of the extremely high density and functionality, 
small length-scales, multitude of competing multi-physics 
degradation mechanisms and failure mechanisms, rapid 
turnover of technology and highly diverse global supply 
chain.   
 Current predictive methods in the industry for predicting 
failures, based on reliability handbooks, have been shown to 
be very inadequate.  Some of the key causes for prediction 
inaccuracies are model inaccuracy and uncertainties in the 
inputs to the models.  The most important input is the life 
cycle loading history and uncertainty arises in this input 

because of the wide variability in the field between different  
 
 
 
 
 
 
 
 
users.  Another important source of uncertainty is in input 
model constants that represent material behavior, because of 
the wide variability in defect levels and manufacturing 
tolerances in specimen populations.  These variabilities are 
difficult to quantify apriori in new emerging technologies, 
making it difficult to make accurate proactive failure 
predictions.   Corrective and preventive maintenance can, 
to some extent, mitigate failure risks [2]. However, 
mandatory maintenance on an inflexible predetermined 
schedule is not always the most cost-effective way to ensure 
availability and safety.  Prognostics and health management 
(PHM) methodology is based on monitoring the 
performance of a system in-situ in its actual life-cycle 
conditions to identify early signs of degradation, providing 
advance warnings for future failures, and implementing 
timely corrective action to mitigate the failure risk. As an 
important aspect of PHM, the technology of embedded 
canaries has attracted more and more attention from 
industry due to their intrinsic capability to provide early 
warning of host degradation and impending failure, under 
actual life-cycle conditions.  
  The use of the term canary in PHM is derived from the 
historic concept of using canary birds in coal mines in order 
to detect the presence of hazardous gases. Because canaries 
are more sensitive to hazardous gases than humans, the 
death or sickening of the canaries provided early warning to 
miners to take corrective action and exit the mine-shaft. In 
this paper, we use the word canary to refer to a family of 
technologies that are embedded in functional electronic 
systems, to give early warning of functional degradation, 
and to provide estimates of the remaining useful life of the 
host system.     In a classical context, the word canary was 
used to refer to a device that changes its functional 
characteristics ahead of similar functional parameters that 
indicate system performance degradation when the product 
is subjected to life cycle stress conditions. If the acceleration 
factors are known, their time-to-failure estimates can be used 
to quantify the remaining useful life of the system. The early 
warning provided opportunities to implement timely 
risk-mitigation actions and avert danger.  The use of 
canaries is an integral part of the prognostics approach 
described in this paper, and the concept is generalized and 
extended well beyond the classical definition, as discussed 
later in this paper.  
 Canaries have been applied to several system-level 
applications to predict failures and the resulting changes in 
the performance of systems. In system-level applications 
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they have had a significant impact in failure prediction by 
providing advance warning about the initiation and growth 
of defects and their correlation to system parameters. 
Researchers have been working on applying canaries to the 
prognostics of both components and systems. Han et al. [3] 
proposed a concept of developing a “canary-containing” 
packet that can be attached externally to weapon casings. In 
this process, the canaries received environmental loading 
identical to what the casings experienced. The canary 
material was configured to deteriorate at a faster rate than 
the system’s parameters.  Energetic materials that have a 
faster rate of initiation of failure mechanisms compared to 
semiconductors materials have been applied to 
semiconductor systems to evaluate their failures and manage 
their health by applying pre-calibrated circuits to the host 
chip (Mishra et al. [4]).  
  Ridgetop Group has developed sentinels for advance 
warnings of device failures [5]. Wang et al. [6] demonstrated 
a 90nm 128Kb SRAM test chip on which the canary cells 
track changes in temperature and data retention voltage, 
which is the minimal value of positive supply voltage (VDD). 
These canary cells ensure a reliable function of the host chip 
by protecting core cells in a closed loop VDD scaling system. 
Calhoun et al. [7] proposed a closed-loop approach using 
canary flip-flops to enable power savings of over 40 times in 
a 0.13-um, dual-test chip. Anderson et al. [8] used low cycle 
fatigue solder joints and corrosion-susceptible circuits on the 
host printed circuit board as canaries and identified 
prospective failure mechanisms. Goodman et al. [9] used a 
prognostic cell to monitor time-dependent dielectric 
breakdown (TDDB) of the metal oxide semiconductor 
field-effect transistor (MOSFET) on integrated circuits.  
  In this paper, we present several examples of canaries for 
electronic systems, but first provide the context of the 
prognostics framework that canaries are a part of.  The 
prognostics framework to monitor and predict the remaining 
life of systems is reviewed in Section II. A detailed review 
of canary design and application is presented in Section III. 
Examples of canaries and their applications are provided in 
Section IV. In Section V conclusions are provided, including 
future functional goals for canaries. 
  

II.  PROGNOSTICS METHODOLOGY 
   To improve the availability of a system, we need to 
ensure that the system can perform as intended (i.e., without 
failure and within specified performance limits) for a 
specified period of time, in its life-cycle environment [10]; 
within a specified confidence level. Unfortunately, 
traditional reliability assessment methods using Telcordia 
[11], PRISM [12], and FIDES [13] fall short in performance, 
since they fail to provide accurate failure predictions, which 
can result in poor design and logistic decisions [14] [15]. 
The central idea in prognostics is to assess the reliability in 
real-time, under its actual application conditions, so that 
timely corrective action can be implemented and availability 
can be improved. The general prognostics methodology is 

shown in Figure 1 [16]. Prognostics techniques combine 
sensing, recording, and interpretation of environmental, 
operational, functional and relevant non-functional 
parameters, to determine failure precursors that are 
indicative of a system’s health. A failure precursor is a data 
event or trend that signifies impending failure. A precursor 
indication is usually a change in a measurable variable that 
can be associated with system degradation and subsequent 
failure. For example, a shift in the output voltage of a power 
supply might suggest impending failure due to a damaged 
feedback regulator and damaged opto-isolator circuitry. 
Pecht et al. [18] presented a guideline for selecting 
measurable parameters that can be used as failure precursors 
for electronic products. 

The first step in Prognostics involves a virtual life 
assessment where design data, expected life-cycle 
conditions, the results of failure modes, mechanisms, and 
effects analysis (FMMEA), and Physics of Failure (PoF) 
models are the inputs. Based on the virtual life assessment, it 
is possible to prioritize the critical failure modes and failure 
mechanisms. The existing functional data, bus monitor data, 
BIT, IETM, canary data, maintenance and inspection 
records can be used to identify potential the abnormal 
conditions and parameters. Based on this information, PHM 
engineers select the functional parameters to be monitored 
for health assessment and relevant sensor locations as well 
as relevant canary designs. Based on the collected functional 
and canary data, the health status of the products can be 
assessed [10]. The different approaches to prognostics are 
highlighted in yellow boxes in Figure 1. Three current 
approaches for Prognostics include: (A) Data-driven 
Prognostics; (B) Model-based Prognostics; and (C) 
Prognostics based on fusion of model and data.  

A.  Data-driven Prognostics: This approach is based on 
trend analysis of the precursor data from the functional 
system and the canaries. The monitored data is analyzed to 
see if there is a significant change in the previous trends 
observed with this data. Trends are detected by extracting 
key features which are then classified as recurring anomalies 
or transient soft events, using machine learning methods.  
Time series techniques and logic-reasoning techniques are 
used for state estimation, to diagnose the underlying cause 
and source of degradation. Since the data is highly 
multi-dimensional, canary data can help to deconvolve them 
for insights about dominant failure mechanisms.  
Forecasting methods and dynamic state tracking methods are 
used to extrapolate this data and provide predictions of when 
failure is likely to occur and hence provide an estimate of the 
remaining useful life of the system. Techniques such as 
parametric curve fit, expert system, neural networks, and 
Bayesian inference are often used for this task [19]-[28]. 
Methods, such as FMMEA [29], are used to determine 
parameters that need to be monitored.  

B.  Model-based Prognostics: Life-cycle loads (thermal, 
mechanical, chemical, electrical, and so on) on a product can 
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arise from the manufacturing, shipment, storage, handling, 
and operating and non-operating conditions, and may lead to 
performance or physical degradation of the product and 
reduce its service life [16]. Physics-of-Failure (PoF) models 
provide quantitative stress-damage relationships, based on 
the root causes of the failure of canaries and functional 
components and provide insights about how fast the system 
degrades and when failure can be expected, when used in 
conjunction with the precursor data from the functional 
systems and from the canaries. PoF models are typically 
based on fundamental physics and may take a relatively 
simple approach at the continuum length-scale or a more 
complex ab-initio approach at the molecular and atomistic 
length scales [17]. 

C.  Fusion Prognostics This approach provides an intelligent 
combination of the model-based and data-driven methods to 
improve the accuracy and speed of diagnostics and 
prognostics. Data-driven approaches have the drawback that 
they require vast amounts of training data and are difficult to 
extrapolate to new use conditions. Methods based purely on 
PoF models have the drawback that real-time calculation of 
failure models for a complex system may be 
computationally very cumbersome.  Fusion between the 
two provides valuable synergy and also provides the ability 
to discriminate between real failure trends vs. transient 
false-positives. 
 Self-checking circuitry and built-in-tests (BITS) can also 
be incorporated, in addition to canaries, to sense abnormal 
changes in system functions and to activate autonomous 
reconfiguration, to compensate for the malfunction [30]. 

 
Figure 1. Prognostics methodology. 

 
III. DESIGN OF CANARIES 

Canaries are embedded in products and are used to 
identify changes in failure mechanisms as a precursor to 
predict the future effects of similar mechanisms on system 
parameter changes. Canaries are integrated into components 
or devices during the system design phase. These embedded 
canary devices (also called prognostic cells) are non-critical 
elements in overall system performance [31]. 

Figure 2 shows the failure probability density 
distributions for functional products and corresponding 

canaries, showing the concept of remaining useful life 
(RUL) or ‘prognostic distance.’ 

 

 
Figure 2. Failure probability density distributions for canaries and 

actual products, showing prognostic distance or remaining useful life 
(RUL). 

 
Figure 3. Classification of canaries. 

The term canaries, as used in an extended generalized 
context in this paper, refers to three main types of devices 
(see Figure 3): expendable canaries, sensory canaries, and 
conjugate-stress canaries.  

A. Expendable canaries: They are based on controlled 
acceleration of failure precursor signatures, using 
error-seeded, sacrificial, nonfunctional elements (canaries). 
The error-seeding in canaries includes three inter-related 
techniques that will be used individually or synergistically to 
enhance the degradation rates in the canaries: geometry 
error-seeding, material error-seeding, load error-seeding. 
Section IV will discuss these three error-seeding methods in 
detail. Based on their dominant failure mechanisms, 
expendable canaries can be further categorized into 
overstress canaries and wear-out canaries. Overstress 
canaries come into play when loaded stress exceeds its 
strength. Some of the overstress failures are dielectric 
breakdown, electrostatic discharge (ESD), interconnect 
fracture, pin buckling. Wear-out failure, which is caused by 
gradual increase of cumulative damage, includes 
electromigration, fatigue, Tin whisker growth, interconnect 
corrosion, time dependent dielectric breakdown caused by 
tunneling mechanisms, etc. 

B. Sensory canaries: Inspired by biological system, these 
canaries can detect non-traditional signatures of system 
degradations. They will be able to “look,” “listen,” “smell,” 
and “feel” for signs of degradation and impending failure 

178

ADAPTIVE 2010 : The Second International Conference on Adaptive and Self-Adaptive Systems and Applications

Copyright (c) IARIA, 2010               ISBN: 978-1-61208-109-0



 
 
 

 
 

just as an animal does. By collecting and analyzing these 
signs, early warnings of failure can be achieved. Examples 
include: infrared canaries to “look” for degradation in 
microprocessors based on changes in the thermal dissipation; 
Impedance spectroscopy and time domain reflectometry to 
“listen” for defects in signal traces and wiring harnesses. 
Micro Electro-mechanical System (MEMS)-based chemical 
canaries to “smell” for outgassing products; Piezoelectric or 
piezoresistive canaries to “touch” for signs of delamination, 
which is a common failure mechanism of laminated material 
subjected to repeated cyclic stresses or impact, with 
significant loss of mechanical toughness. 

C. Conjugate-stress canaries: These canaries can provide 
model-based fusion prognostic assessments of remaining 
useful life based on simultaneous identification of 
conjugate-stress pairs, which is a novel concept because 
most conventional detectors provide a single stress metric, 
rather than a conjugate pair. For example, a conventional 
stress monitoring canary such as a thermocouple can 
measure only temperature. In many cases, it cannot provide 
sufficient information to health condition. However, the 
conjugate-stress approach will simultaneously measure 
temperature and heat flux at the same site by using a pair of 
collocated detectors. 
   These three classes of canaries will provide 
unprecedented levels of synergistic prognostic and health 
information of systems to minimize uncertainties in 
remaining useful life assessment.  In this paper we discuss 
only the first type, viz. expendable canaries. Discussion of 
the two remaining types of canaries is deferred to a future 
paper  
   Expendable canaries can be designed based on controlled 
error-seeding, which provides controlled acceleration of 
degradation rates and failure precursor signatures. 
Technically, an expendable canary can be any device that 
wears out faster than the actual product under the same 
environmental and operational loading conditions. An 
example is a dummy filament in a light bulb, which is 
designed to age faster than functional filament can be used 
as an expendable canary to provide early warning of 
impending failure of the bulb. The methods to make the 
filament fail faster than normal one can be either scaling its 
physical dimension, or subjecting it to higher current stress, 
or utilizing material of less susceptibility to melting. We 
called these methods geometry error-seeding, material 
error-seeding, load error-seeding.  

A. Material error-seeding 
   Material error-seeding takes advantage of the greater 
sensitivity of the materials to failure modes (physical or 
chemical),in canaries compared to that in the functional 
system so that degradation and failure of canaries can be 
used as an early warning of the degradation and future 
failure of of the functional host, before experiencing 
catastrophic loss. Since there are various properties a 
material has, many types of canaries, in theory, can be 

designed. These properties include, but are not limited to, 
the following: mechanical, thermal, electrical, magnetic, 
optical and photonic, chemical, biological, reaction to gases, 
and reaction to humidity. Each category has quite a few 
material properties; for example, the mechanical properties 
include Young’s modulus, specific modulus, tensile and 
compressive strength, ductility, Poisson’s ratio, etc. Thermal 
properties include thermal conductivity, thermal diffusivity, 
coefficient of thermal expansion, specific heat, glass 
transition temperature, melting point, Curie point, etc. 
Electrical properties include electrical conductivity, 
permittivity, dielectric constant, dielectric strength, Seebeck 
coefficient, etc. The selection of material properties is 
determined by the application of canaries and other 
concerns, such as the effectiveness of providing early 
warning, ease of fabrication, and low cost. 

B. Geometry error-seeding canaries 
  This kind of canary is designed to change in shape, or 
geometry in response to changes in failure mechanisms 
induced by a stimulus. Ridgetop Group’s commercialized 
prognostic cells can provide an early-warning sentinel for 
device failures [5]. Their prognostic cells are available for 
0.35, 0.25, and 0.18 micron CMOS processors. The time to 
failure of these prognostic cells depends on the stress on the 
circuit, including voltage, current, temperature, humidity, 
and radiation. The earlier failure of these prognostic cells is 
achieved by the controlled shrinking of the cross-sectional 
area of the circuits inside the cells. With the same amount of 
current passing through host circuits and canary circuits, the 
canary circuits withstand a higher current density than host 
circuits. Currently, the prognostic cells are available for 
semiconductor failure mechanisms such as electrostatic 
discharge (ESD), hot carrier, metal migration, dielectric 
breakdown, and radiation effects.  Other examples are 
presented in Section IV of this paper. 

C. Load error-seeding canaries 
Failure mechanisms initiate and grow in canaries when 

they are exposed to changes in environmental and usage 
loading conditions. Due to the exposure to different load 
level, materials or elements can deteriorate at different rates. 
In most cases, critical components at high-risk are assembled 
at a position close to the corner of a substrate. They fail to 
perform to set specifications in comparison to those 
components assembled at normal positions. 

 
IV. DEMONSTRATION OF EXPENDABLE CANARIES 

 Three examples of expendable canaries are presented in 
this paper: (A) Thermal aging of filaments; (B) 
thermomechanical fatigue of solder joints; (C) 
electrochemical migration (ECM) on a printed wiring board.  

A. Filament Canary:  Filaments are used in incandescent 
light bulbs and in X-Ray tubes to utilize electrical energy to 
generate photons of desired frequency range.  However, 
some of the input electrical energy is also converted to 
thermal energy which results in long-term degradation and 
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failure of the filament.  In this example we explore the 
concept of an error-seeded canary that is designed to age 
faster than the functional filament. The test vehicle in this 
simple demonstration is a commercial 100mA electrical 
fuse. As shown in Figure 4, the canary is error-seeded by 
compromising the hermetic seal of the glass housing with a 
small crack which exposes the filament to oxygen in the 
external atmosphere.  

 
Figure 4. Canary fuse with cracked glass housing. 
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Figure 5. At 1.4 Amps: Functional filament fails at t1= 30.4 secs, canary 

filament fails at t2 =18.6 secs. 
 
The flow of current causes the canary filament to oxidize 
faster than the functional filament, causing an increase in the 
resistivity of the material. Thus, this is an example of load 
error-seeding. (i.e. the canary filament experiences a more 
harsh chemical environment than the functional filament 
does).  A constant current is supplied to both the test 
filament and the canary filament, causing increased Joule 
heating and faster melt-down of the canary.  Figure 5 
shows that the canary degrades 60% faster than the 
functional filament in this case, under a constant 1.4 Amps 
supply.  In other words, when the canary fails, the RUL (or 
prognostic distance) is approximately 66% of the canary 
life. 

B. Solder Joint Canary 
 Solder interconnections of electronic equipment are 
subjected to cyclic thermomechanical loading caused by 
thermal expansion mismatches during environment and 
operational temperature excursions. This cyclic loading can 
degrade solder interconnects by cyclic fatigue and eventually 
lead to a wearout failure. PoF models have been developed 
to accurately predict solder joint interconnect reliability 
under imposed test conditions [32-34].  However, in actual 

use, conditions may vary from anticipated design criteria and 
across field electronic equipment.  In this example, two 
solder canaries are discussed: one by load-seeding and the 
other by geometric error-seeding [8].   
 The solder interconnect canaries presented here are 
specially designed to fail by the same failure mechanism and 
at a pre-defined prognostic distance from the failure of the 
functional solder joint. The proposed canary structures can 
be an extra non-functional error-seeded interconnect on a 
BGA device (as depicted in 6). Alternatively, it can be an 
additional nonfunctional component with error-seeded 
interconnects, such as the leadless ceramic chip resistor 
(LCR) depicted in Figure 7.  

 
Figure 6. Example of a BGA Test Vehicle. 

 
Figure 7. Resistor Canary Structure. 

 The BGA canary uses load seeding (due to increased 
distance from the component center) while the LCR canary 
uses geometric seeding by using a narrower joint pad. 
 Testing of BGA structure has demonstrated that in many 
BGA architectures, the outer solder joints may fail sooner 
than interior solder joints.  Figure 8 shows the probability 
density functions of the time to failure data for the BGA 
depicted in Figure 6, subjected to a defined temperature 
cycle loading condition.  Comparing the distributions 
reveals a less than 1% probability that an inner net will fail 
prior to an outer net.  Comparing the mean cycles to failure 
reveals a prognostic distance of 1360 cycles for the given 
BGA test specimen and given loading condition. 
 Thermal cycling tests on LCRs with standard and narrow 
pads demonstrates a reduced life expectancy for the canary 
LCR. The proability density functions of the failure data for 
standard and canary LCRs under a defined temperature 
cycling test is presented in Figure 9.  A comparison of 
distributions reveals the probability of a standard pad failure 
prior to a canary pad failure to be less than 0.01%. 
Examination of mean cycles to failure reveals a prognostic 
distance of approximately 1660 cycles. 
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Figure 8. Probability Density Function of Cycles to Failure for an outer net 

and interior nets of a BGA. 

 
Figure 9. Probability Density Function Plot of Functional and Canary 

LCRs. 

While the presented test data shows promise for solder joint 
canaries, more work is required.  Testing of large IO BGAs 
has demonstrated that the corner solder joints are not always 
the first to fail. Figure 10 depicts a quarter of a 1500 I/O 
BGA subjected to a specific temperature cycling test. 
Different solder joints at different distances from the center 
were monitored in different daisy-chain nets shown by the 
different color codes. Figure 10 also depicts the frequency of 
first failures.  As can be observed, a canary that only 
includes the three corner solder interconnects in this case 
would frequently miss failure prior to functional interior 
solder interconnects [35].   
 

 
Figure 10. Frequency of First Failure in large BGA. 

C. PWB Metallization Canaries:  
 Electronic products whose usage conditions include 
operation in environments with elevated levels of humidity 
are known to exhibit failures involving reduced surface 
insulation resistance (SIR).  This can result in leakage 
currents or short circuits between portions of the circuit that 
are at different potential levels and are intended to be 
electrically isolated from one another, such as between a 
signal or power circuit and ground.  One of the mechanisms 
by which the SIR of a printed circuit board (PCB) can 
degrade is known as electrochemical migration (ECM).  
The most visible manifestation of ECM is the presence of 
conductive metallic dendrites spanning the dielectric gap 
between differently biased leads, traces, or electrodes on the 
surface of a PCB.  ECM occurs by the following sequence 
of steps [36]: formation of a path for ion migration between 
electrically biased metallic conductors, ingress into the path 
of a layer of electrolyte with dissolved ions typically in an 
adsorbed or condensed layer of water; ionization and 
dissolution of metal from the more positively charged 
conductor (anode); migration of metal cations through the 
electrolyte; deposition and reduction of metal cations onto 
the more negatively charged conductor (cathode); and 
growth of conductive metallic filaments towards the anode 
as more metal is deposited on the cathode. 
 Canaries for ECM can be incorporated into printed circuit 
boards and monitored for accelerated degradation in surface 
insulation resistance that will precede a functional failure of 
the circuit.  The error-seeding for the canary design would 
thus need to be based on one or more known acceleration 
factors for this mechanism.  Factors which could be used to 
accelerate ECM of canary structures include load parameters 
such as voltage, adsorbed moisture, and ionic contamination; 
geometric parameters such as spacing between conductors, 
and length of interface between conductors; and material 
parameters such as the presence of absence of a solder mask. 
Choice of suitable factor(s) should be based upon the 
achievable degree of control or repeatability, their sensitivity 
to specific processing or environmental risks, and their ease 
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of integration into a product based on available space, 
voltage, and processing limitations.  
 One example of a structure which could serve as an 
effective ECM canary is a comb structure in which 
interdigitated conductors would be biased at similar or 
higher voltages than the functional circuit (Figure 11a).  
Acceleration of ECM failure relative to the functional circuit 
would be obtained due to the extended length of the 
interface between the conductors as well as the spacing of 
the conductors in the comb structure compared to the 
smallest spacing between biased conductors present in the 
circuit.  This is geometric error-seeding.  A source of 
material error-seeding is the elimination of the solder mask 
in the canary (Figure 11b), as it changes reduces the time 
taken for moisture to diffuse to the failure site (PWB 
metallization).  Further acceleration could be obtained by 
load error-seeding, such as elevating the voltage applied 
across the adjacent conductors.  A cross-hatched solder 
mask pattern across the comb could accentuate sensitivity to 
trapped contaminants associated with solder assembly or 
handling and anticipate circuit failures resulting from 
sub-standard processing procedures.  These canary 
concepts are currently under investigation in this study and 
results will be presented in a future paper. 
  

 
                      (a)                               (b) 

Figure 11. ECM canaries consisting of comb structures patterned from 
metallization on a PCB: (a) with solder mask between conductors; (b) with 

no solder mask. 

 
Figure 12. Conductor pattern for ECM canary for use with a pair of surface 

mount leaded packages. 

 Another example of a canary suitable for ECM is one in 
which the opportunity exists for dendritic growth next to or 
under surface mount components (Figure 12).  In this case, 
acceleration of ECM failure can be obtained due to 
entrapment of moisture or ionic contaminants under the 
components, such as by residues of a no-clean solder flux; 
and/or by voltage and spacing, as well as total length of 

interface between the multiple adjacent solder pads 
connected in parallel. 
 

V.  CONCLUSIONS 
  Prognostics and health management is emerging as a 
popular alternative to traditional reliability assessment 
methods, for assuring product availability. As an important 
approach to prognostics, canaries have attracted more and 
more attention from industry. The definition of three 
different types of canaries has been presented: expendable 
canaries, sensory canaries and conjugate-stress canaries. 
Three main design methods for expendable canaries have 
been described, and three examples have been presented. In 
the interest of space, discussion of other types of canaries is 
deferred to a future paper.  However, there remain 
unanswered questions of canaries for PHM. For instance, 
PoF knowledge is needed to ensure that a canary will 
behave in the same manner as host devices and fail due to 
the same failure mechanisms as host devices.  Since 
manufacturers already have mature and standard assembly 
lines for existing products, affordably retrofitting canary 
devices, especially with different scaling, is a big challenge. 
Another big challenge is the invasiveness of canaries, based 
on their impact on degradation rates of the functional host.  

Research on canary approaches for PHM is extremely 
critical for electronics that must meet high availability 
targets. By gaining a better understanding of the design rules 
of canaries, PHM will gain more momentum and more 
penetration into our daily life, and ensure higher availability 
for commercial and military products.  
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