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Abstract—To improve safety and security issues, maneuvering 

target detection and tracking are important facilities for 

navigation systems. Therefore, conventional navigation 

systems are equipped with Radar-based systems for the same 

purpose. However, Radar systems suffer some practical 

problems that are associated with the targets in close quarter 

navigation. Furthermore, Radar singles attenuate with 

distance, weather (ie. rain) and sea conditions, where the target 

tacking performances are degraded. Therefore, a Laser 

Measurement System (LMS) is proposed in this study to 

overcome  the problems faced by the conventional Radar 

systems at close quarter navigation as well as bad weather and 

environmental conditions. Furthermore, capabilities of a LMS 

to measure accurate distance in close proximity as well as to 

observe the shape and size of the target are illustrated. In this 

study, each target is approximated by a cluster of data points 

rather than a single point target that is the main contribution 

in this paper. The adaptive Neural Network approach is 

proposed as a method of tracking maneuvering targets that are 

represented by clusters of data points. Successful simulation 

and experimental results of target detection and tracking that 

are tested on a experimental platform,  SICK© LMS, are also 

presented in this paper. 

Keywords- Laser Measurement System, Competitive Neural 

Networks, Target tracking, Data Points Tracking 

I.  INTRODUCTION 

Maneuvering target detection and tracking capabilities 
are important facilities for a navigation system to improve 
safety, security and survivability during its voyage. The 
conventional navigation systems are equipped with Radar-
based systems to facilitate maneuvering targets and obstacles 
detection and tracking. However, Radar-based systems are 
suffered by practical problems especially with detection and 
tracking of targets in close quarter navigation.  Furthermore, 
Radar singles attenuate with the distance, weather (ie. rain) 
and sea conditions, where the target tacking performances 
are degraded [1]. Therefore, under the distance, weather and 
environmental conditions, the frequent calibrations for Radar 
systems are required to improve its accuracy [2].   

Furthermore, Radar-based systems are limited in 
evaluation of  accurate range, bearing, shape and size of 
targets in long distance as well as close quarter navigation. 
The unsuccessful target detection and tracking in close 
quarter navigation could affect on inaccuracy of the distance 

measurements with respect to the targets and obstacles in the 
environment. Therefore, the errors in distance measurements 
can eventually affect on inaccurate collision risk evaluations 
and wrong navigational decisions.  

This study proposes, a Laser Measurement System 
(LMS) that is integrated with an adaptive Neural Network 
algorithm for maneuvering target detection and tracking in 
close quarter navigation. Hence, these facilities can be 
formulated in navigation systems for accurate collision risk 
evaluations and better maneuvering decisions. The proposed 
LMS experimental platform in this study is presented in 
Figure 1. As presented in the figure, the experimental setup 
consists of a Laptop computer, where the adaptive Neural 
Network algorithm is implemented, SICK© LMS, which is 
the target detection sensor, and a moving target (ie. moving 
robot). Further details on this system are presented on 
Section V of this paper.  

The work presented in this study is a part of ongoing 
effort to formulate an Intelligent Collision Avoidance 
System (ICAS) in ocean navigation as described in [3] and 
[4]. Therefore, two-dimensional target tracking formation 
with respect to ocean navigational conditions is considered in 
this study. 

The organization of this paper as follows: An overview 
of recent developments in a LMS is presented in Section II. 
The proposed adaptive Neural Network approach is 
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presented in Section III. The computational simulations are 
presented in Section IV. The experimental results generated 
by the LMS platform are presented in Section V. Finally, a 
brief conclusion is presented in Section VI of this paper. 

II. RECENT DEVELOPMENTS IN LMSS AND TARGET 

TRACKING 

A. Laser Measurement System (LMS) 

People and vessel/vehicles detection and tracking  are 
popular experimental applications in recent LMSs. The 
people tracking system, based on Laser range data and using 
a multi-hypothesis Leg-Tracker, in-cooperated with the 
Kalman filter with a constant velocity based model, is 
proposed by [5].  

Almost all research and commercial applications in the 
LMS area are 2D due to the limitations in current LMS 
sensor technology. However, 3D LMS applications are also 
been proposed in some studies by circulating the sensor in a 
third dimensional axis. The 2D Laser-based obstacle motion 
tracking and predicting in a dynamic unconstrained 
environment using the Kalman filter [6], and the Particle 
Filters and Probabilistic Data Association [7] are presented 
in respective studies. The implementation of a LMS for 
detection and classification of 3D moving objects is 
illustrated by [8] and [9]. Furthermore, an experimental 
evaluation of a LMS for tacking people by a mobile platform 
is presented by [10] and classifications of people by a mobile 
robot is presented by [11]. 

The integration of a LMS and a vision system can use for 
successful obstacle tracking and classification due to its 
capabilities of capturing the comprehensive details of the 
targets as well as the environment. The combined Laser and 
vision based  approach for simultaneous detection and 
tracking of multiple pedestrians based on the Bayesian 
method is proposed by [12]. 

Furthermore, several industrial applications of LMSs can 
be observed in recent literature: As a navigational aid for a 
truck-trailer combination vehicle system [13], a collisions 
warning system for a transit bus [14], a safe driving aid 
system for a car driving in polluted environment [15], an 
obstacle avoidance system for a car navigation system [16] 
and an obstacle detection system for an off-road vehicle [17] 
are presented in respective studies. 

However, the most model based LMS and other sensor 
based target-tacking algorithms could not facilitate the 
dimensional based target tracking and a target is 
approximated to a single data point. Therefore, in this study, 
this concept is further elaborated to formulate a target as a 
cluster of data points during its tracking process, which is the 
main contributions in this study. 

B. Detection and Tracking of Moving Objects 

Detection and Tracking of Moving Objects (DTMO) is 
one of the main research areas that was developed towards 
maneuvering target tracking. The main functionalities of the 
DTMO can be divided into three sections [18]: Scan unit, 
Target Classification unit and Target Tracking & Behavior 
Prediction unit. 

The main objective of the Scan unit is to formulate 
geometrical clusters, where a cluster  defined as a set of 
measured data points that could belong to a same object or 
multiple objects, of data points, lines and arcs with respect to  
targets and obstacles in the environment. However, this 
could be generated by the sensors (ie. Radar and LMSs) in 
the target tracking system. 

The segmentation of data clusters by a geometrical 
method is proposed by [18]. Inscribed angle variations and 
recursive line-fitting methods for lines and arc/circles 
detection by LMS data are proposed by [19]. However, 
special considerations for the joints and break points should 
be considered during its  segmentation of data clusters, in 
this method. Therefore, the proposed adaptive Neural 
Network approach can overcome the failures can occur in the 
segmentation process of  data clusters due to varying 
geometrical constrains.  

The main objective in the Target Classification unit is to 
formulate the Segment-Objects correspondence. The 
correspondence mainly classified into geometrical figures 
like circles or polygons. However, four classification 
methods are proposed by recent studies [20] for this prupose: 
Features to Features, Points to Features, Points to Points and 
Combinations. Furthermore, the identifications of 
geometrical figures and features are successful done by the 
Neural Network approach in recent studies [21].  

Even though the proposed adaptive Neural Network 
approach is limited for detection and tracking of  clusters of 
data points, this method can further develop for identification 
of geometrical figures and features of the targets. Finally, the 
Target Tracking and Behavior Prediction unit is proposed to 
estimate target current states and to predict  future navigation 
trajectories. The EKF based system states estimation and 
maneuvering trajectory prediction for ocean vessel 
navigation is proposed in [22].  However, this area is beyond 
the scope of this paper. 

III. ADAPTIVE NEURAL NETWORK BASED DETECTION & 

TRACKING 

A. LMS Scan & Data Collection 

The LMS experimental platform is presented in Figure 1. 
The LMS sensor generates respective range r(k) , ℝ

R
 and 

bearing &(k) , ℝR
 values in polar coordinates as presented in 

the figure. The accumulated data clusters of range and 
bearing values that represent complete environmental 
conditions, including the stationary and moving targets, at 
the k-th time instant in polar coordinates can be written as: 

 

[ ]
[ ])k()k()k()k(

)k(r)k(r)k(r)k(

R21

R21

ϑϑϑ=ϑ
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 ...  

 ...  r
 (1) 

 
Then the range and bearing values in polar coordinates 

are converted into Cartesian position coordinates. The i-th 
position data point in Cartesian coordinates [

R
xi(k) 

R
yi(k)] 

can be formulated as: 
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Therefore, the i-th position data point of the data cluster 

at the k-th time instant can only have two coordinates of 
[

R
xi(k) 

R
yi(k)]  that are measured by the sensor. However, 

these position data points should be normalized with respect 
to the maximum range of the sensor. The normalization 
requirements are further discussed in sub-section C of this 
main section. The normalization of the position coordinates 
can be written as: 
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where Rmax is the maximum range of the LMS sensor.  

B. Artificial  Neural Networks 

The theoretical foundation of  artificial neurons is derived 
from biological concepts and theories in the brain and 
nervous system. An artificial neuron has several inputs that 
correspond to the synapses of a biological neuron. An 
artificial neuron has one output that is corresponding to the 
axon of a biological neuron. Each input of a neuron is 
corresponding to a certain weight value that influences the 
corresponding signal over the neuron output. This concept 
can formulate into a transfer function in an artificial neuron. 

The transfer function calculates sum of the net input with 
respect to the assigned weight values and compares that with 
a certain threshold level to generate the neuron output [23]. 
The connection of several neurons in a combination of series 
and/or parallel formations can recognize as a Neural 
Network.  

C. Competitive Neural Network 

The Competitive Neural Network (CNN) [24] integrated 
with an adaptive learning algorithm of the Instar Rule is 
proposed in this study for detection and tracking of 
maneuvering targets. The CNN is trained to track moving 
data clusters by competing its neurons, where a target is 
approximated for a cluster of data points. .  

The structure of the CNN is presented in Figure 2. As 
presented in the figure, the CNN consists of four units: Scan 
unit (Data Points), Prototype vectors unit (W), Competition 
unit (C), and Feedback-loop (Instar Rule). The input to the 

CNN consists of a accumulated position vector p(k) , ℝRx3
. 

The prototypes vectors, W(k) , ℝSx3
, are stored as rows 

vectors in section  W, that are target tracking neurons of the 

CNN. The net input n (k) , ℝ
R
, is the input to the  

Competition unit, C, and  a(k) , ℝS
, is the output from the 

Competition unit, C, at the k-th time instant. Finally, the 
feedback loop, associated with the Instar Rule that is 
proposed to adjust the prototype neurons to continue tracking 
of maneuvering targets. 

 
1) Competitive Layers 

 
The Competition unit, C, consists of a transfer function 

that is used to generate competition among neurons. Hence, 
the proposed transfer function can be written as: 
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where the competitive (compet) transfer function can be  

further elaborated as: 
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and the accumulated position vector p(k) = [p1(k) p2(k) … 
pR(k)] is associated with the i-th position vector, pi(k) = 
[xi(k) yi(k) zi(k)] that represents the position of x, y and z 
coordinates of a data cluster as described previously. 
However, only normalized x and y position coordinates are 
calculated from equation (3). For a fair competition among 

neurons, each position vector, pi(k) , ℝ
3
,  should have a unit 

magnitude condition. Hence, the position value of zi(k) can 
be derived considering a unit magnitude condition as 
proposed previously and can be formulated as: 

 

1)k(z)k(y)k(x|)k(
222

iiii =++=p|  (6) 

 

Hence the coordinate zi(k) can be calculated considering 

equation (6) that gives a unit magnitude condition for each 

data point in the data culster. The  coordinate  zi(k) can be 

calculated as: 

 

)k(y)k(x1)k(z
22

iii −−=  (7) 

 
One should note that this implementation can interpret as 

a transformation of 2D space position coordinates in the 
sensor range into 3D space position coordinates with a unit 
magnitude condition.  Therefore, initially x and y coordinates 
are normalized considering the sensor maximum range (see 
equation (3)) that is an essential requirement of the neural 
competition.  

 

Figure 2.  Competitive Neural Network 
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Furthermore, the net input, n(k), can calculate from the 
scalar product between two vectors W(k) and pi(k) as 
presented in equation (4). This scalar product between two  
position vectors related to the distance between position 
vector,  pi(k), and each prototype vectors wj(k),  where W(k) 
= [w1(k) w2(k) … wS(k)]. A unit magnitude condition for 
each prototype vector, wj(k),  should also be considered for 
fair competition among neurons. Hence the j-th prototype 
vector, wj(k), magnitude condition can be written as: 

 

1|)k(j =w|  (8) 

 
In the Competition unit, C, (see Figure 2), the distance 

between position vector, pi(k) to each prototype vector  wj(k)  
is calculated. This concept can further be elaborated as: 
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The i-th net input of scalar product between two vectors,  

ni(k),  is equal to cos(2222i(k)), where 2222i(k) is the angle between  
a position vector, pi(k),  and a prototype vector, wj(k). 
However, the scalar product between two vectors, ni(k), is 
the input to the competitive transfer function. Therefore, the 
neuron, whose prototype vector is in the direction closest to 
the respective position vector, pi(k), is assigned output of 1 
and others are assigned 0 by the transfer function as 
formulated in equation (5).  

This concept can further elaborate as a situation where 
the closet neuron gets excited by a data cluster and  the 
excited neuron takes over all data points in the respective 
data cluster. However, after winning the data cluster, the 
prototype vector of the respective neuron should be 
improved (should move further closer to the data cluster).  

This continues process consists of two different iteration 
loops. The first iteration loop formulates a continuous 
mechanism, where the wining neuron continuously gets 
closer to its respective data cluster. The second iteration loop 
formulates another continuous mechanism, where the 
dynamic data clusters that are observed by the sensor at 
different time instants are introduced into the CNN. 
Therefore, a capable learning rule should be formulated to 
facilitate proper update of the winning neurons with respect 
to different  data cluster conditions. 

 
 
 
 

 

2) Competitive Learning 

 
Initially, the values of  prototype vectors, W(k),  in the 

CNN, are assumed to be unknown.  Therefore, the learning 
rule is expected to calculate appropriate values for the 
prototype vectors. This concept is categorized as 
unsupervised learning. When a competitive layer excites a 
neuron that is closest to the data cluster, then the learning 
rule will use to modify the appropriate prototype vectors in 
the CNN to move close to the data cluster in this process. 
The Instar Rule is proposed in this study as an unsupervised 
learning mechanism to modify the appropriate prototype 
vectors in the CNN. 
 

3)  Instar Rule 

 
The Instar Rule that is derived from the Hebb Rule is 
illustrated in [24] is briefly discussed in this section. The 
unsupervised Hebb Rule to update prototype vectors can be 
written as: 

 

)k()k()1k()k( T
paWW α+−=  (10) 

 

where α is a learning rate. However, a constant learning rate 
could be a disadvantage in the learning process of a neural 
network, where it could affect on the error convergence rate. 
Even though the beginning of a learning process a higher 
learning rate is an advantage to the neural network, with the 
error reduction it could be a disadvantage. Hence, to improve 
the Hebb Rule, a weight decaying term that is proportional to  
ai(k)  and W(k-1)   is introduced. Equation (10) with a 
weight decaying term can  be written as: 

 

)1k()k()k()k()1k()k( −γ−α+−= WapaWW
T  (11) 

 

where ( is the decay rate. Furthermore, assuming ( = ", 
equation (11) can be written as: 

 

( ) Wp aWW
T )1k()k()k()1k()k( −−α+−=  (12) 

 
Equation (12) is called as the Instar Rule that is proposed as 
an unsupervised learning rule for the CNN in this study. 

IV. COMPUTATIONAL IMPLEMENTATION AND 

SIMULATIONS 

The computational simulation of a multi-target tracking 
situation is presented in Figure 3.  The simulation consists of 
two moving targets that are presented by two clusters of data 
points.  Furthermore, two prototype vectors are also assigned 
in this simulation to tack both data clusters. 
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The target tracking algorithm, simulated in this study, 

consists of two main loops: the LMS target scanning loop 
and the CNN target tracking loop. The main objective of the 
LMS target scanning loop is to scan the environment and to 
observe the stationary and moving targets as an accumulated 
data cluster. Then this information will transfer into the CNN 
target tacking loop. The main objective of the CNN target 
tacking loop is to adapt the CNN to track  target maneuvers 
by updating its respective prototype vectors. This should be 
done by the proposed learning rule. 

The two prototype vectors of the CNN are called as NN 
(Neural Network) Tracks 1 and 2. As presented in the figure, 
the NN Tacks 1 and 2 are presented by ◊ and ○ respectively.  
The initial prototype vector values of the NN Tracks 1 and 2 
can be any arbitrary values as presented in the initial 
positions of the NN Tacks 1 and 2 (see Figure 3). Finally, 
both NN Tracks are adapted its prototype vectors to track 
moving targets that represented by two clusters of data 
points. The tracking trajectories of the neurons are presented 
by Trajectory NN Tracks 1 and 2  in the figure. 

Furthermore, it is observed that NN Tracks 1 and 2 are 
finally converged into approximate mean values of the  
respective data clusters at each time instant. Therefore, the 
mean position values can be considered as  measurement 
positions of the targets at each time instant and that can be 
used for further analysis of  target state estimations and 
trajectory predictions [22].  

V. EXPERIMENTAL PLATFORM AND SIMULATION 

RESULTS 

A. Laser Measurement System 

The experimental platform is presented in Figure 1. As 
presented in the figure, the hardware section mainly consists 
of SICK© Laser Measurement System (LMS). The SICK© 
LMS is an active position measurement unit that operates by 
measuring the time of flight of Laser light pulses, where 
Laser beam pulses are emitted by the sensor and reflected 
due to the objects in the environment [25]. However, the 
LMS is designed to scan 2D space and to collect range and 
bearing data of the targets that are located in the 
environment. 

The SICK© LMS model of LMS221, that is designed for 
marine environment is used in this study. This sensor is 
capable of scanning bearing angle of 180

0
 with 0.5

0
 accuracy 

field views with 75 Hz scanning frequency. The operating 
range of 8 m with the minimum linear and angular resolution 
of 1 mm and 0.25

0
 are initially programmed into the sensor. 

The SICK©  LMS data communication is facilitated by RS-
232 with the speed of 9.6 kBd. 

Furthermore, the experimental platform consists of a 
Laptop computer with Windows© operating system and a 
power supply unit to power the LMS sensor. The Laptop 
computer is equipped with the RS-232 connection to 
communicate with the LMS sensor. 

B. Software  Architecture 

The software architecture that is used in this study mainly 
consists of LABVIEW© Real-time platform. Further 
MATLAB© toolbox of neural networks is also integrated 
into the LABVIEW© Real-time platform for implementation 
of the CNN.  

C. Experimental Results 

The experimental result of a stationary and moving target 
tracking situation in Real-time environment is presented in 
Figure 4. The measurements are noted in mille-meters (mm) 
of SI units in the figure. The two targets, a stationary target 
and a moving target, are considered in this experiment. The 
stationary target is located in the middle of the figure and the 
moving target is circulating around the stationary target as 
presented in the figure. The moving target is presented by a 
moving cluster of data points. The CNN consists of two NN 
Tracks to track both targets as presented in the figure. 
Furthermore, the stationary target is monitored by the NN 
Track ○ and moving target is monitored by the NN Track ◊ 
are also presented in the figure.  

However, the CNN tracking region is limited by upper, 
lower, left and right boundary values 9000 (mm), 10 (mm), -
1200 (mm) and 1200 (mm), respectively. As presented in the 
figure, NN Track ◊ is following each point in the data cluster 
of the moving target alone its maneuvering trajectory. As a 
conclusion, the experimental results have shown that the NN 
Track ○ and Track ◊ are successfully tracking both stationary 
and moving targets as observed in the simulations.  

 
 

Figure 3.  Computational Simulations : Multi-Target Tracking 
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However, the data points beyond the limits of upper, 

lower, left and right boundary values are ignored in this 
analysis. These data points are located beyond the simulation 
limits, which represent other stationary and moving objects 
in the experimental environment. 

VI. CONCLUSION 

The dimension based target detection and tacking are 
main contributions in this study, where the most of target 
tracking methods are simulated for a data point or an 
approximated small data cluster based targets. Furthermore, 
one of the popular machine learning applications of an 
adaptive Neural Network associated with an unsupervised 
learning algorithm, the CNN, is implemented and successful 
simulation and experimental results are obtained in this 
study. 

 Even though the Neural Network applications are 
extensively used for recognition of stationary data patterns,  
moving data clusters can also be detected and tracked  by the 
proposed method. Even though, the proposed CNN behave 
as an effective adaptive network for tracking targets, it also 
been affected by some inherited problems. 

 The first, the selection of a learning rate should be 
compromised with the target tracking speed. However, this 

compromise could affect on the stability of  the prototype 
vectors.  

The second, the stationary and moving target tracking 
under complex environmental conditions: several neurons 
can track different parts of the same target and one neuron 
can track several targets in close range navigation. This is 
another challenge that is faced in this CNN approach. 
However, this situation can be solved by selecting proper 
number of neurons with respect to the targets in the 
environment. 

. Furthermore, the Laser-based CNN approach can 
further develop for identification and classification of 
maneuvering targets where the Neural Network approach is 
extensive implemented on statistical pattern recognition [26]. 
Furthermore, integration of image based (ie. Infra-red) 
facilities could improve the target detection and tracking 
process [27].  Hence, the integration of illustrated features 
(ie. identification and classification) into target detection and 
tracking are proposed as future work in this study.  
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