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Abstract—In this paper, we study how cognitive radio based
wireless regional area networks (e.g., IEEE 802.22 networks)
can adapt themselves so that they can co-exist with each other.
These networks opportunistically accesses and uses under–
utilized bands and relinquishes them when the primary user
of that band initiates transmission. Such networks, deployed
and operated by competing wireless service providers have to
self-coexist among themselves by accessing different parts of
the available spectrum. Since there is no coordination among
the networks in accessing the spectrum bands, they have to
adapt such that interference from neighboring networks is
minimum. When interfered, a network can adopt either one
of two choices– switch to a new band hoping to find a non-
interfering band, or stay with its current band hoping that the
interfering network(s) will move away to a new band. Using
game theory, we model the spectrum band switching process as
an ‘infinitely repeating’ game where the aim of each network
(player) is to minimize its cost of finding a clear channel. We
first explore the pure strategy solution space for the game
and show that a pure strategy equilibrium, though possible,
is infeasible to implement in reality. Thus, we further explore
the mixed strategy space and propose a mixed strategy Nash
equilibrium among the networks. We analyze the game for the
2-player case, where a network is in interference with only
one other network. We also provide hints on how to obtain the
equilibrium for the n-player game.

Keywords-IEEE 802.22 networks, self-coexistence, game the-
ory, mixed strategy.

I. INTRODUCTION

Recent experimental studies that have conclusively shown
that licensed radio spectrum is highly under–utilized and
that the usage is space and time dependent [17]. In order
to take advantage of the spectrum availability due to the
analog to digital transition [19], the FCC in the United
States has defined provisions to open the sub–900 MHz
TV bands for unlicensed services. However, it is mandated
for the unlicensed devices to detect and avoid interference
with the licensed users in a timely manner [16]. Cognitive
radio (CR) based IEEE 802.22 [15] is a wireless regional
area network (WRAN), that is targeted to provide a solution
to this problem [18]. The aim of IEEE 802.22 is to use
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spectrum bands dynamically through incumbent sensing and
avoidance. For this reason, much of the standard of the IEEE
802.22 is based on cognitive radio. The basic operating
principle relies on the cognitive radio being able to sense
whether a particular band is being used and, if not, utilize the
spectrum without interfering with the transmission of other
users (primary incumbents). The elements in these networks
(i.e., cognitive radio enabled devices) continuously perform
spectrum sensing, dynamically identify unused spectrum,
and operate in the spectrum band when it is not used
by the primary incumbent radio systems. Upon detecting
incumbents, cognitive radio enabled devices are required to
switch to another channel or mode. This entails the need
of cognitive radio techniques not only to detect the pres-
ence/absence of incumbent signals but also to cater to the
more important issue of self-coexistence among the 802.22
networks. In a typical deployment, multiple 802.22 BSs and
CPEs may operate in the vicinity of each other where they
compete with each other for grabbing as much spectrum
as possible. Different from other IEEE 802 standards where
self-coexistence is not a problem, it is so for these networks.

In this paper, we construct an “infinitely repeated” game
for the networks (players) for accessing spectrum in an
interference free manner where the players always believe
that there is some chance the game will continue to the next
period. We analyze both pure and mixed strategy solution
space for the game and show that a pure strategy equilibria,
though possible, is infeasible to implement in reality. We
propose a mixed strategy Nash Equilibrium among the play-
ers (networks), which does not require negotiation messages
to be exchanged between the players.

There are several advantages to taking a game theoretic
approach: such model works in a distributed manner where a
centralized allocating mechanism is not needed thus making
the system scalable. Being rational entities in the game,
each of the IEEE 802.22 networks tries to maximize its
own payoffs (In our case, minimize the cost of finding
a clear spectrum band subject to constraints on resource
usage). Furthermore, negotiation messages does not need
to be exchanged among the networks. Thus, our solution
abides by the assumption that a network does not have any
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information about the other networks.
The rest of the paper has been organized as follows. In

section II we provide a brief discussion of the related works
on dynamic spectrum access. Section III formulates the self-
coexistence problem as a dynamic channel switching game.
The game is analyzed in detail in Section IV, exploring
both pure and mixed strategy spaces and their corresponding
equilibria. Conclusions are drawn in the last section.

II. RELATED WORK

As far as dynamic spectrum sensing and access are
concerned, there is an emerging body of work that deal
with different decision making aspects, issues and challenges
in cognitive radio network setting. Energy detection have
been largely used in [2], [4] to monitor primary spectrum
usage activity. Spectral correlation based signal detection
for primary spectrum sensing in IEEE 802.22 WRAN sys-
tems is presented in [5]. Signature-based spectrum sensing
algorithms are presented in [1] to investigate the presence
of Advanced Television Systems Committee (ATSC) DTV
signals. In a similar effort, sequential pilot sensing of Ad-
vanced Television Systems Committee (ATSC) DTV signals
is carried out in [9] to sense the primary usage in IEEE
802.22 cognitive radio networks. In [6], a novel frequency
sensing method is proposed known as dynamic frequency
hopping (DFH). In DFH, neighboring WRAN cells form co-
operating communities that coordinate their DFH operations
where WRAN data transmission is performed in parallel
with spectrum sensing without interruptions. The aim here
is to minimize interrupts due to quiet sensing. In [3], a novel
metric called Grade-of-Service (GoS) is defined and the
trade-off between miss-detection and false alarm is studied
for optimizing spectrum sensing performance.

Though most of the above mentioned works focus on
primary spectrum usage sensing, however, the issue of self-
coexistence among multiple CR networks are not considered.
A broad survey on resource allocation in cellular networks
using graph coloring mechanisms can be found in [8],
[11] and in the references therein. However, most of these
works do not consider the dynamic availability of spectrum
bands due to the presence of primary users and thus can
not be directly applied to IEEE 802.22 network spectrum
sharing. In [13], the dynamic channel allocation problem
is formulated as graph coloring problem where dynamic
channel availability is observed by the secondary users.
In [14], spectrum allocation and scheduling problems are
studied jointly in cognitive radio wireless networks with
the objectives of achieving fair spectrum sharing. However,
all channel divisions are treated equally here. In [7], a
distributed, real-time spectrum sharing protocol called On-
Demand Spectrum Contention (ODSC) is proposed that
employs interactive MAC messaging among the coexisting
802.22 cells. However, control signaling is greatly increased
through extensive MAC messaging.

III. GAME FORMULATION

In this section, we formulate the self-coexistence problem
as a dynamic channel1 switching game. We assume that a
set of IEEE 802.22 base stations in a region compete for
one of the M > 1 orthogonal spectrum bands not used
by primary incumbents. The respective cells for each of the
bases stations can be partially or completely overlapped with
each other. We refer to such overlapping cells as interfering
cells and assume that they can not use the same spectrum
band; otherwise QoS of the users of all interfering cells may
suffer.

Note that a base station needs to compete only with the
neighboring base stations for which there is some overlap2

for occupying a channel void of interference. If two base
stations are more than one hop away from each other, then
it is possible for them to occupy the same spectrum band,
and thus cannot be said to be competing with each other for
occupying a channel [10]. Thus, we consider a base station
with its corresponding cell as a rational player and define a
set of opponents for each player. The opponent set consists
of the the interfering neighbors of the palyer under question.
In analyzing the problem, without loss of generality, we
can focus our attention on a particular base station with is
cell, and analyze the game from its perspective. The same
reasoning would apply for other base stations as well.

Let us consider an arbitrary base station and call it
player 0 and let N be the number of its neighbors. Also
let N ′ (≤ N ) be the number of neighbors with whom
player 0 is interfering (opponents of player 0), numbered
as player 1, player 2 through player N ′. Thus the player
set corresponding to the base station under consideration is
comprised of players 0, 1, · · · , N ′.

We investigate the dynamic channel switching game,
where the aim of each base station is to capture a spectrum
band free of interference from its neighbors, from both pure
and mixed strategy perspectives. At the beginning of the
game, each base station dynamically chooses one of the
M allowable spectrum bands for its operations. If two or
more overlapped base stations choose the same spectrum
band, then interference will occur and their transmissions
will fail. Thus each base station has to pay a price when it
experiences interference from its adjoining base stations. Let
this cost be CI . Each of these base stations will then have
to take decisions regarding whether to stick with the band
they have acquired or to switch to a new band in the next
stage of the game. When a base station switches to a new
channel, it will have to reallocate the new spectrum among
its users. This also entails a cost. Let this cost be CS . We
assume that CS < CI , otherwise it does not make sense for

1Throughout this paper, we use the words “channel” and “band” inter-
changeably unless explicitly mentioned otherwise.

2Note that, two or more neighboring base stations can operate success-
fully using different channels.
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a base station to consider switching to a new channel when
facing interference.

Next we discuss the two strategies that can be adopted by
a base station, viz, the stay strategy and the switch strategy in
their quest to find a clear spectrum band free of interference
from its neighbors.

A. The stage game

If interfered at any stage of the game, player i has the
binary strategy set of switching to another band (expecting
to find a free spectrum band) or staying on the current
band (assuming the interferers will move away). Using game
theoretic notation, the binary strategy set for player i can be
represented as:

Si = {switch, stay} (1)

To generalize, let us assume that a base station (player 0) is
interfering with N ′ of its neighbors (players 1 through N ′).
Let us assume the existence of the strategy set S0, S1 · · ·S′N
for the players 0, 1, 2, · · · , N ′. In this game, at every stage,
if player 0 chooses strategy s0 ∈ S0, player 1 chooses
strategy s1 ∈ S1 and so on, then we can describe the
set of strategies chosen by all N ′ + 1 players as one
ordered (N ′+1)-tuple, s = {s0, s1, · · · , sN ′}. This vector of
individual strategies is called a strategy profile (or sometimes
a strategy combination). For every different combination of
individual choices of strategies, we would get a different
strategy profile s. The set of all such strategy profiles is
called the space of strategy profiles S. It is simply the
cartesian product of the vectors S for each base station
which can be written as: S = S0 × S1 × · · · × SN ′ .

Thus we can describe our stage game by the tuple G =
(P, S, C), i.e, by a player set P , where P = {0, 1, · · · , N ′},
a space of strategy profiles S, where S = S0 × S1 × · · · ×
SN ′ and a vector C of von Neumann-Morgenstern utility
functions defined over S.

B. The Repeated Game

When a base station is in interference with a subset of
its neighbors, it is possible that the base station does not
find a clear band in a single play of the stage game G
described above. This leads us to the notion of repeated
play of the stage game G. We assume that the cost incurred
by each player from the repeated game is the sum of the
cost incurred by the player in each play of the stage game.
Since each base station would like to find a clear channel in
a minimal amount of time incurring as little cost as possible,
our objective is to minimize the cost.
Two statements are implicit when we say that in each period
we are playing the stage game G:
• For each player, the set of strategies available to him

in any period in the game G is the same regardless of
which period it is and regardless of what actions have
taken place in the past.

• The payoffs to the players at any stage depend only
on the action profile for G which was played in that
period, and this stage-game payoff to a player for a
given action profile for G is independent of which
period it is played.

Before we elaborate on the repeated game strategies, let
us first define some notations in the context of the repeated
game. We will refer to the strategy of the stage game G
which player i executes in period t as st

i. The strategy profile
played in period t is just the N ′ + 1-tuple of each players
stage-game strategies:

st = (st
0, s

t
1, · · · , st

N ′) (2)

In order to be able to condition the players’ stage-game
action choices in later periods upon actions taken earlier by
other players we need to define the concept of a history as a
description of all the actions taken till the previous period.
Formally, the history at time t can be written as:

ht = (s0, s1, · · · , st−1) (3)

In other words, the history at time t specifies which stage-
game action profile (i.e., combination of individual stage-
game actions) was played in each previous period.

Let player i play the game for T stages. Then we can
write players i’s strategy for the repeated game as:

si = (s0
i , s

1
i , · · · , sT

i ) (4)

We refer to the strategy profile s for the repeated game as
the following N ′+1 tuple profile of players’ repeated game
strategies:

s = (s0, s1, · · · , sN ′) (5)

1) Repeated Game Solution Approach: Whenever we
consider a repeated game, we need to define for how long
the game will be played. But before we do that we make
note of the following two important observations about the
game at hand:

1) For a given number of channels M , even if a base
station (say n) finds a clear channel at a stage t, it
might not correspond to the final assignment for base
station n. This is because some of its neighbors might
still be experiencing interference, because of which
they might choose the same channel that base station
n is currently residing on at a later stage.

2) The number of available channels M may vary over
time since the spectrum usage is time and space
variant.

From these two observations, it is clear that a definite ending
time (or criteria) for the repeated game can not be inferred.
Thus, when a base station (say n) faces interference from
its neighbors, the decision that base station n takes can
not be conditioned by foreseeing future events. It can only
be influenced by the past actions taken by its opponents
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(neighboring base stations). Hence, the best that base station
n can do, when facing interference, is to play a strategy
which is a best response, given base station n’s beliefs about
the strategies of its opponents, such that its expected cost of
finding a clear channel is minimized in the current stage.
Since the opponents of base station n also follow this same
line of reasoning, the strategies played by the base stations
constitute a Nash Equilibrium at every stage of the game.
We now consider the following important result:

Theorem 1: A sequence of stage-game Nash Equilib-
rium strategy profiles is also a Nash Equilibrium in the
(possibly infinitely) repeated game. More formally, let s̄ =
(s̄0, s̄1, · · · , s̄N ′) be a strategy profile for the repeated game.
If each of the stage-game strategy profiles s̄i of s̄ is a Nash
Equilibrium strategy profile for the stage game, then s̄ is
also a Nash Equilibrium for the repeated game.

Proof: We will prove this by contradiction. Let us
assume that s̄ is not a Nash Equilibrium for the repeated
game. Then for some player i there is an alternative repeated
game strategy ŝi = (ŝ0

i , · · · , ŝT
i ) which is different, in at

least one period, from his part s̄i = (s̄0
i , · · · , s̄T

i ) of s̄
such that his payoff in the repeated game is higher, given
that everyone else plays their parts of s̄. In order that his
repeated-game payoff be higher, there must be at least one
period t in which his stage-game payoff using ŝt

i is higher
than the stage-game payoff he would get from playing s̄t

i.
But if that is true, then s̄t

i could not have been a part
of a Nash-equilibrium strategy profile of the stage game,
because some other strategy for player i, viz. ŝt

i, would have
been better for i. This contradicts the hypothesis that every
component of s̄ is a Nash equilibrium of the stage game.

IV. GAME ANALYSIS

With the strategy set and costs defined, the optimization
problem is to find a mechanism of switching or staying
such that cost incurred can be minimized and an equilibrium
can be achieved. We typically assume all the players are
rational and pick their strategy keeping only individual cost
minimization policy in mind at every stage of the game. In
this section we analyze a single repetition of the stage game
‘G’. We intend to find if there is a set of strategies with
the property that no base station can benefit by changing its
strategy unilaterally while the other base stations keep their
strategies unchanged (Nash equilibrium [12]).

A. Exploring Pure Strategy Space
We start with the pure strategy space played by all the

base stations. To simplify investigation of Nash equilibrium
with pure strategy space, we consider the game with two
players i and j coexisting on one band. The game is
represented in strategic form in Table I. Each cell of the
table corresponds to a possible combination of the strategies
of both players and contains a pair representing the costs
of players i and j, respectively. Recall that CS is the cost
incurred by a base station when it switches to a new band

and CI in the price paid by a base station experiencing
interference in terms of its reduced QoS. Also CS < CI ,
as explained before.

i\j Switch Stay
Switch (CS , CS) (CS,0)

Stay (0,CS) (CI , CI)

Table I
PAYOFF MATRIX FOR PLAYERS i AND j

As is evident from the table, this game has two pure
strategy Nash equilibriums – one corresponding to the strat-
egy profile (switch, stay) with player i choosing to switch
and player j opting to stay and the other corresponding to
(stay, switch) with player i choosing to stay and player
j opting to switch. These two cases have been shown in
boldface in the table. In both of these cases neither player
can reduce his cost by playing a different strategy if the
other player plays his part.

However, in reality, neither player can ascertain the strat-
egy to be played by the other player. This inhibits each
player from playing a pure strategy. For instance, con-
sider the equilibrium (switch, stay). Player i would always
choose to switch if and only if he knew for sure player j
would always choose stay and vice versa. Similar argument
also applies for the other equilibrium, (stay, switch). In
practise, all a player can do is to develop a belief about
the strategy of the other player by forming a probability
distribution over the strategies of his opponent based on
history of the past stages of the game and act accordingly.
This leads us to investigate the mixed strategy solution space
of the game.

B. Exploring Mixed Strategy Space
In the mixed strategy space for the base stations we assign

probabilities to each of the strategies in the binary strategy
space. We define the mixed strategy space of player i as:

Smixed
i = {(switch = pi), (stay = (1− pi))} (6)

where, player i chooses the strategy “switch” with proba-
bility pi and chooses the strategy “stay” with probability
(1− pi).

Let us first show the 2-player case (two base stations
residing on the same band) before we generalize to a N -
player case.

1) Mixed Strategy with 2 players: The 2-player game is
represented in strategic form in Table II, with the corre-
sponding mixed strategy probabilities shown.

i\j Switch (pj) Stay (1− pj)
Switch (pi) (CS , CS) (CS,0)

Stay (1− pi) (0,CS) (CI , CI)

Table II
PAYOFF MATRIX FOR PLAYERS i AND j

In order to find the mixed strategy equilibria, we need
to first find each player’s best response correspondence.
Player i’s best-response correspondence specifies, for each
mixed strategy pj played by player j, the set of mixed
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strategies pi which are best responses for player i, i.e, it is
a correspondence p∗i which associates with every pj ∈ [0, 1]
a set p∗i (pj) ⊂ [0, 1] such that every element of p∗i (pj) is
a best response by player i to j’s choice pj . The graph of
p∗i is the set of points: {(pi, pj) : pj ∈ [0, 1], pi ∈ p∗i (pj)}
Similarly the graph of p∗j is the set of points: {(pi, pj) : pi ∈
[0, 1], pj ∈ p∗j (pi)}.

To find i’s best-response correspondence we first compute
his expected payoff for the stage game for an arbitrary
mixed-strategy profile (pi, pj) by weighting each of i’s pure-
strategy profile payoffs by the probability of that profile’s oc-
currence as determined by the mixed-strategy profile (pi, pj)
(see Table II):

Ei[C] = pipj
M − 2
M − 1

CS + pipj
1

M − 1
(CS + CI)

+pi(1− pj)CS + (1− pi)pj0 + (1− pi)(1− pj)CI (7)

Note that the first two terms in equation (7) both correspond
to the strategy profile (switch, switch). This is because
when both players i and j chooses to switch, there can be
two possible associated costs – (i) i and j choose different
channels (from M − 1 possible channels) after switching.
The probability of i and j choosing different channels after
switching is (M − 2)/(M − 1) and the cost associated for
each player is CS . (ii) i and j choose the same channel (from
M − 1 possible channels) after switching. The probability
of i and j choosing the same channel after switching is
1/(M−1). The cost associated for each player is (CS +CI)
since even after switching they still interfere each other.

Player i’s minimization problem is:

minpi∈[0,1]Ei[C] (8)

Since pi is i’s choice variable, it will be convenient to
rewrite equation (7) as an affine function of pi. Simplifying
equation (7) we get:

Ei[C]= pi

[
M

M − 1
pjCI + (CS−CI)

]
+ [CI − pjCI ]

= piδ(pj) + [CI − pjCI ] (9)

where, δ(pj) = M
M−1pjCI + (CS − CI).

For a given pj , the expected cost function Ei[C] will be
minimized with respect to pi at either:

1) The unit interval’s right endpoint (viz. pi = 1) if δ(pj)
is negative, or,

2) The unit interval’s left endpoint (viz. pi = 0) if δ(pj)
is positive, or,

3) For every pi ∈ [0, 1] if δ(pj) is zero, because Ei[C]
is then constant with respect to pi

Let δ(pj) be zero at p∗j . To find p∗j , let us equate δ(p∗j )
to zero: M

M−1p∗jCI + CS − CI = 0. Solving for p∗j we get:

p∗j =
(

1− CS

CI

) (
1− 1

M

)
(10)

10

0

j

(switch,stay)

p*

1

p
j

(stay,switch)

p
i

(a)

0 1

0

1

p
j (stay,switch)

(switch,stay)

p
ip*

i

(b)

Figure 1. a) Player i’s best response for the game; b) Player j’s best
response for the game.

Mixed Strategy N.E
(p ,p ) = (p*,p*)

0

0 1p*
i

p*
j

1

p
j

p
i

(stay,switch)

(switch,stay)

i j ji

Figure 2. The players best response correspondences and the Nash
Equilibrium set.

Now, since we considered that CS < CI and M > 1, thus
p∗j lies in the interval (0, 1). Since δ(pj) is an increasing
function in pj , player i will choose the pure strategy pi =
1 against pj’s on the interval [0, p∗j ) and the pure strategy
pi = 0 against pj’s on the interval (p∗j , 1]. Against pj = p∗j ,
player i is free to choose any mixing probability. Player i’s
best response correspondence is shown in Figure 1(a).

Similarly, player j’s expected payoff function is:

Ej [C] = pj

[
M

M − 1
piCI + (CS − CI)

]
+ [CI − piCI ]

= pjδ(pi) + [CI − piCI ] (11)

Let δ(pi) be 0 at p∗i . Then by equating δ(p∗i ) to 0 we get:

p∗i =
(

1− CS

CI

)(
1− 1

M

)
(12)

which again lies in the interval (0, 1). Since δ(pi) is an
increasing function in pi, player j will choose the pure
strategy pj = 1 against pi’s on the interval [0, p∗i ) and
the pure strategy pj = 0 against pi’s on the interval
(p∗i , 1]. Against pi = p∗i , player j is free to choose any
mixing probability. Player j’s best response correspondence
is shown in Figure 1(b).

The Nash Equilibria are the intersection points in the
graphs of player i’s and j’s best-response correspondences.
This comes directly from the fact that a mixed strategy
profile {p̄i, p̄j} is a Nash Equilibrium if and only if p̄i is a
best response by player i to player j’s choice of p̄j and also
p̄j is a best response by player j to i’s choice of p̄i. Figure 2
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shows the intersection of the graphs of player i’s and j’s best
response correspondence. We see that the intersection of the
graphs of the two best response correspondences contains
exactly three points, each corresponding to mixed strategy
profile (pi, pj): (stay,switch), (p∗i , p

∗
j ) and (switch,stay). The

first and last of these correspond to the two pure strategy
Nash equilibria we identified earlier in Section IV-A. The
additional one corresponds to strategy profile (p∗i , p

∗
j ) =

((1− CS

CI
)(1− 1

M ), (1− CS

CI
)(1− 1

M )).
Note that, at any stage game, player i does not know what

player j will choose pj to be. Thus what player i does is,
based on history, estimates the value of pj . For example, if i
observers j switches 7 out of 10 times, then pj is estimated
to be 0.7. Based on this, it takes an appropriate decision
depending on where in the interval ((0, p∗j ],p

∗
j or (p∗j , 1])

the estimated value of pj lies. Likewise, player j on his
part also estimates the value of pi and takes his decision
regarding whether to switch or not. Thus both players i and
j play their best response against each other, based on their
beliefs of what the other player’s strategy is.

2) Mixed Strategy with N players: So far, we have shown
the equilibrium for the 2-player case. Now, let us provide
some insights on finding the equilibrium for the N -player
game. Let us consider an arbitrary base station and call
it player 0. Let player 0 be interfering with N ′ of its
neighboring base stations, numbered 1 through N ′.

Let p be the ‘switching’ probability of each one of player
0’s N ′ opponents (i.e., base stations which are interfering
with 0). Similar to the arguments for the 2-player case, for
player 0 to be indifferent between choosing its two pure
strategies, the expected cost when it chooses to ‘switch’ must
be same with that of when it chooses to ‘stay’. When player
0 chooses to ‘switch’, the strategies taken by the opponents
of player 0 can result in any k ∈ [0, N ′] opponents of
player 0 choosing to ‘switch’. Let this cost be E[cswitch

0 ].
Similarly, when player 0 chooses to ‘stay’, the strategies
taken by the opponents of player 0 can again result in any
k ∈ [0, N ′] opponents of player 0 choosing to ‘switch’. Let
this cost be E[cstay

0 ]. As discussed above, E[cswitch
0 ] and

E[cstay
0 ] must be same for player 0 to randomize between

his two pure strategies. Thus, player 0’s mixed strategy NE
probability of switching will correspond to the roots of the
equation obtained by equating E[cswitch

0 ] to E[cstay
0 ]. This

equation can be easily solved by using numerical methods
(e.g., bisection method).

V. CONCLUSIONS

In this paper, we use game theory to devise the strategies
of cognitive radio based IEEE 802.22 networks such that
multiple networks can co-exist even without any coordina-
tion among them. A base station’s choice of either switching
to a new channel or staying with its current channel been
modeled as an ‘infinitely repeating’ game, where each player
always believes that there is some chance the game will

continue to the next period. The aim of each base station
is to minimize its cost of finding a clear channel. Analysis
of the game reveals that there exists a pure strategy Nash
Equilibria. However, since we cannot assume coordination
among the players before a play, implementing such a
strategy in reality is infeasible. Thus, we explore the mixed
strategy space of the game and propose a solution based
on the same. In the mixed strategy space, each player takes
an appropriate decision, based on the switching probabili-
ties of its interfering players. The proposed mechanism is
distributed in nature without the need for any negotiation
messages, thus making the solution scalable.
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