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Abstract—Gesture learning is a complex and multistep process
where trainees are supposed to improve several psychomotor and
cognitive skills. According to numerous studies, trainees need to
be provided with various types of feedback to improve these skills.
These studies also highlight that benefits of a given type of feed-
back depend on trainees situation. Therefore, feedback must be
chosen according to an analysis of trainees activity. Sensorimotor
approaches have investigated the impact of feedback on specific
learning situations, but the analysis of gestural activity, which
would allow the automatic selection of an appropriate type of
feedback, is still a recurring issue. In this paper, we propose a new
model for gestural training systems based on smart interaction.
This model relies on a recognition module based on Naive Bayes
classifiers, representing trainees activity by a vector describing
their errors, and representing training environments by vectors
describing their set of implemented types of feedback. We present
a platform for calligraphy training we designed and developed
based on our model. Through a user study, we emphasize the
benefits of our approach on trainees development.

Keywords–Training Systems, Interactive systems, Adaptive Sys-
tems, Gesture Recognition.

I. INTRODUCTION

Gestural training systems have been studied in various
research fields, which can be divided into two families: sen-
sorimotor approaches and modeling approaches. Sensorimotor
approaches focus on the impact of providing a specific type
of feedback on trainees activity. Virtual training environments
belong to these approaches, and enhance training by providing
real-time 3D feedback. Such systems have been used for dif-
ferent kinds of gestures, such as welding gestures [1], obstetric
gestures [2], or pottery gestures [3]. Haptic systems are also
part of sensorimotor approaches, as they investigate trainees
kinesthetic memory [4] by adding proprioceptive cues during
visuo-motor learning tasks [5]. These systems have proven to
benefit motor skill training, including within the context of
handwriting [6]. Although these fields focus on the impact of
providing a specific type of feedback in a given context, they
do not question the issue of modeling gestural activity, nor
the issue of adapting feedback according to this model. Yet
results have shown the benefits of providing diversified [7]
and personalized [8] feedback on the learning experience.

Intelligent tutoring systems are part of modeling ap-
proaches. A key feature of these systems is the adaptation of
learning content and difficulty level to the trainee. This adapta-
tion requires an accurate student model [9] which allows for in-
dividualization [10]. These systems process interpretable data
(results from a form, answer to a multiple-choice question).
Such systems do not capture motor skills, which necessitates
the use of sensors and results in huge amount of data which

need to be processed to become interpretable. Furthermore, al-
though intelligent tutoring systems model students knowledge,
very few studies have tackled the issue of modeling gestural
activity.

Calligraphy training is an interesting case study. When
trainees learn calligraphy with a human teacher, the teacher
analyzes trainees gestural and cognitive activity. The teacher
also analyzes trainees drawing to identify patterns of error.
From this analysis, the teacher can provide various guidance
by giving verbal advice and focusing trainees attention on
specific characteristics, or demonstrating the gestures. With
such training, trainees build a knowledge based on their
experience and the kinesthetic memory of the gestures, leading
them to the acquisition of control and regularity, which are
essential skills to produce calligraphy. We believe that being
able to model users activity from sensor data, so that systems
adapt according to this model, would enhance trainees gestural
learning experience. Therefore, our goal is to model and link
highly variable sensor data representing trainees performances
over training time, and training environments containing their
set of implemented types of feedback.

This paper proposes CalliSmart, an intelligent interactive
system with gestural input, relying on a framework which
makes it possible to place trainees in a representation space,
from which it is possible to analyze the evolution of their
performances. By placing feedback types in this representation
space depending on their relevance in a given situation, the
system provides appropriate types of feedback to trainees ac-
cording to their activity. The paper is structured as follows: the
next section present an overview of related studies. Section III
introduces our interaction model. Experiments are presented in
Section IV, and results are exhibited in Section V. Finally, we
discuss these results and introduce future works in Section VI.

II. RELATED WORK

This section introduces several studies investigating the
process of gesture learning, and the impact of feedback on
this process. As these studies advocate to provide a diversity
of feedback, research works on learning modeling and gesture
recognition are then presented.

A. Gesture learning

Trainees learn gestures through different steps, each step
involving cognitive, psychomotor or biophysical skills [4],
[11]. In each of these steps, trainees build very specific gestural
and kinesthetic abilities, and focus on very different parts of
their activity (Figure 1).
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Figure 1. The three steps of motor skill learning, inspired from [11].

Although some questions still have to be answered, most
learning strategies advocate to give very simple and precise in-
formation to trainees in the cognitive step, trainees in this early
stage of learning being very prone to suffer from cognitive
overload. In the associative step, trainees need very specific
feedback to understand their errors and correct them. They
can also benefit from knowledge of performance feedback (KP
feedback). Finally, in the autonomous step, trainees barely need
feedback, but can benefit from knowledge of results feedback
(KR feedback). Hence, it is the variety of (appropriate) types of
feedback which helps trainees during their learning process by
enhancing their perception of their performance. This variety
is also essential to avoid the syndrome of dependence to the
teacher [12], where trainees improve their performances on a
training system but are unable to transfer these improvements
in a real environment.

B. Intelligent tutoring systems

Providing a variety of feedback types is a concern tackled
by Intelligent tutoring systems (ITS). ITS aim at modeling
the students activity by collecting knowledge about them.
Knowledge represented in these models can include students
skills, affect, experience, or stereotypes [13]. From these
models, ITS can analyze how trainees develop over time, and
use this knowledge to determine the most efficient training
situation. To build and update these models, ITS use cognitive
techniques (model-tracing, constraint-based), or artificial in-
telligence techniques (formal logic, expert-systems, planning,
Bayesian belief networks). From a student representation,
ITS can provide various types of feedback by following a
learning strategy. The main learning strategies either follow
the behaviorist approach, which considers learning as a set of
modifications directly correlated with trainees actions within
the learning environment; the cognitive approach, which claims
that unobservable and internal constructs (perception, moti-
vation) influence the learning process; or the constructivist
approach, which holds that individuals construct the world in
their own way, implicating that training should be focused on
the student activity more than on training monolithic strategies.

ITS acquire interpretable data: a score from a test, an
answer to a multiple choice quiz. Thus, ITS cannot deal with
sensor data, as they are not explicit enough to be used directly.
Modeling gestural activity in the same fashion ITS model
students knowledge necessitates a recognition process to make
gestural data acquired from sensors interpretable.

C. Recognition
Research in gesture recognition has been growing to look

for the best way to make sense of sensor data. The most pop-
ular approaches [14] either rely on matching-based strategies
(Dynamic Time Warping, k-Nearest Neighbors), which com-
pute a distance between the data to label and labeled data from
a training database; or on learning models (Markovian models,
Support Vector Machines, Naive Bayes Classifiers), which are
optimized to model or discriminate training examples from
different classes. Such methods have numerous applications,
from intelligent training [15], to gestural training [3], or
human-robot collaboration on assembly lines [16]. A recurrent
issue when dealing with the recognition of gestural or cognitive
activity is the issue of multilabeling, when a data sample can
be labeled not only with one label, but possibly with a set of
labels [17]. The existing methods for multilabel classification
can be divided into two main categories: the problem trans-
formation methods, which transform a multilabel classification
problem into one or more single-label classification problem,
and the algorithm adaptation methods, which extend specific
learning algorithms to directly handle multilabel data [18].
Within the context of gestural training, multilabel recognition
makes it possible to detect several patterns of error at once,
and hence to consider every aspects of trainees performance
when determining which types of feedback to provide.

D. Feedback
Numerous research projects have investigated the impact

of feedback which should, no matter whether it is delivered
by a teacher or a computer, “enhance learning, performance,
or both, engendering the formation of accurate, targeted con-
ceptualizations and skills” [19]. With the possibilities brought
by the emergence of tablets and haptic devices, feedback
has been studied through its sensory modalities (visual, au-
dio, visuo-haptic), certain modalities being more appropriate
than others depending on the context [20]. Temporal features
(static or dynamic feedback, temporal information) are also
determinant, studies showing that changing feedback temporal
features make trainees develop different components of their
gestures [21]. If some configurations have proven to be more
or less effective than others depending on the training situation,
it appears that each configuration has its advantages and
drawbacks, depending upon the learning situation and trainees
abilities [19], [22].

III. INTERACTION MODELING

Providing a variety of appropriate feedback types through-
out the learning enhance trainees learning [22]. A fundamental
issue when creating a gesture training system is therefore to
decide which type of feedback to provide in order to maximize
the benefits for trainees learning. This issue can be split into
four issues: 1) The recognition and modeling of gestural and
cognitive activity. 2) The definition of a set of feedback types
the system can provide. 3)The selection of the type of feedback
to provide depending upon the situation. 4) The evaluation of
trainees learning throughout the training process.

To tackle these issues, the activity first have to be cap-
tured. Then, the acquired data must be recognized and a
representation model of trainees learning state must be built.
Finally, various types of feedback have to be designed and
implemented. Depending on the modeled learning state, a
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subset of feedback types is selected. This subset must be well-
chosen (appropriate according to trainees learning state) to
make them improve their skills (Figure 2).

Figure 2. The CalliSmart process for smart Human-Computer gestural
interaction, within the context of calligraphy training.

A. Capturing calligraphy features
Van Galen [23] defines handwriting as a “multi-component

task implying cognitive, psycho-motor and biophysical pro-
cesses”. Handwriting is a motor gesture, where performers
constantly analyze and modify their movements from their
perception of their current actions, and their internal repre-
sentation of the “ideal” actions. Furthermore, writers not only
react to their actions, but also have a spatial and temporal
representation of the shape they intend to draw. These rep-
resentations imply a principle of anticipation, which means
that performers have, besides modifying in real-time their
movements according to their perception, to anticipate their
future movements. Thus, learning handwriting necessitates
having a cognitive representation of the shape to draw, and a
perception of the different steps necessary in order to construct
this shape (acceleration, angle, curve). It is also essential to
spatially visualize the location of the current drawn shape, by
comparison with locations of the previous shapes and the next
ones which will be drawn (principle of anticipation, Figure 3).

In calligraphy, the goal is to analyze trainees performances
according to two main criteria, which are the regularity and the
visuo-spatial attention. Relying on these criteria, we propose
to analyze trainees activity from identified types of errors. For
each of them, we compute the probability of having the type
of error given the trainee’s performance. Trainees performance
can be modeled by the vector ~U = {x1, x2, x3, , xn} where n
is the number of patterns, and xi corresponds to the probability
of having the pattern i. Each pattern being a pattern of error,
~U = ~0 refers to an expert, and ~U = {1, 1, 1, , 1} refers to an
absolute novice.

B. Interaction modeling
Three phases of interaction can be distinguished from the

process illustrated in Figure 2:

• The trainee performing on the system. (A)
• The system providing feedback to the trainee. (B)

• The trainee making changes/adjustments throughout
the process of interaction. (C)

We propose a space of representation S which aims at
representing these processes. First, (A) is modeled by the
vector ~U as previously explained. Each type of feedback
implemented in the system is represented in S by a vector
~F = {y1, y2, y3, , yn}, where n is the number of error
criteria and yi is the level of the ith error criteria for which
feedback type F is the most relevant. Hence, F is considered
optimal in the situation ~U = ~F (B). Each coordinate of ~F
is empirical and come from an expertise: the expert studies
each type of feedback and decide in which situation it should
be provided. Changes in trainees activity (C) can be tracked
through transition vectors ~Tri = ~Ui − ~Ui−j , 1 ≤ j ≤ i ≤ n,
n being the number of recorded performances for the studied
trainee.

C. Decision
In our approach, ~U represents the performance of a trainee,

and each vector ~Fi represents an element in the set F of
implemented feedback types. According to the representation,
the most appropriate feedback type is the one represented by
the closest vector to the current position of the user. Let ~Fa

be the most appropriate type of feedback in the situation ~Ut,

~Fa = argmin
~Fi∈F

(||~Ut − ~Fi||p) (1)

IV. EXPERIMENTS

By analyzing trainees performances throughout several
exercises, it is possible to investigate the influence of providing
various types of feedback on the evolution of their perfor-
mances, and hence on their progression. Experiments should
determine whether 1) providing feedback will improve the
learning process, and whether 2) providing feedback will re-
duce the variance between performances by enforcing trainees
attention on the task.

Within the process of calligraphy learning, a famous ex-
ercise is the “minimum” exercise (Figure 3). It is used to
train regularity and visuo-spatial attention by asking trainees
to repeat a similar pattern. On a perfectly executed exercise,
white spaces between elements should have the same area, and
elements should have the same shape in term of slope and size.

Figure 3. The “minimum” exercise in calligraphy.

The experiment focuses on the strait vertical lines of the
minimum exercise. Participants are asked to produce a series
of straight lines using a Wacom Cintiq tablet (Figure 4), with
the same obligations than in the minimum exercise: spaces
between lines should be regular, lines should be straight and
vertical. Staves are displayed to limit the calligraphy area. This
exercise exhibits the main features constituting the cognitive
and psycho-motor processes surrounding calligraphy and the
drawing of the “minimum” word.
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Figure 4. The CalliSmart platform.

A. Recognition
A database was created to train the recognition module.

46 participants were involved in the creation of the database.
They had none to very little experience using a graphic table or
practicing calligraphy. Each participant was asked to perform
a series of three exercises, an exercise being a sequence
of 10 to 15 strokes. Experts classified and labeled these
exercises by examining both the gestures (participants were
video recorded) and the results (screenshots were taken at the
end of each exercise). Labels identify three patterns of error:
slope error, size error, and regularity errors (irregular spaces
between strokes). Several errors potentially appearing on a
single exercise, the recognition of an exercise is a multilabel
problem. The acquired database contains 138 examples labeled
by two experts. Examples are unequally distributed among
error classes, as some patterns appeared more often than
others. The training database has been built using a subset
of the 138 acquired examples, making balanced the number of
error patterns. The final training database uses 40 examples
per error pattern. Recognition relies on four Naive Bayes
classifiers, one per class which are trained on examples from
the training database (one-vs.-rest strategy). A 5-fold cross-
validation was performed on the dataset. Classifiers used the
features described in Table I as a representation of an exercise.
Table II shows the recognition results, using classic multilabel
evaluation metrics [17]. As stated in [17], the subset accuracy
metric tends to drop fast when the number of labels grow, or
when the amount of data is small. In our context, finding the
exact combination of label is important, but not essential. The
most important feature of the recognition process is its ability
to recognize correct labels (errors trainees actually made).
Improving these results will be one of our challenges in the
future. An increase in the amount of training data and the use
of a discriminative model may lead to an improvement of the
results.

B. User study
1) Participants: A total of 28 people participated in the

study. Participants were people working at the university,
students in computer science, design and mechanics, with no
to very little expertise in calligraphy. They were randomly and
evenly distributed into the two experiment conditions described
below.

2) Experimental procedure: The first group (no feedback
group) did not receive any feedback. The second group
(feedback group) received feedback from the following set
of implemented types of feedback: 1) Real-time feedback

assists trainees by making them focus on a specific category.
“Regularity” feedback displays where trainees should begin
their next stroke (Figure 5a); “slope” feedback colors the stroke
with a color from green to red depending on the slope (Figure
5b); “size” feedback highlights with a different color the limits
of the drawing space (Figure 5c). Trainees can be assisted
with every combination of feedback types, depending on the
recognition of their activity. 2) Knowledge of results feedback
(Figure 6), indicates the level of the trainee in each category
(“r”, “v”, “l”). KR feedback is always displayed.

(a) (b) (c)

Figure 5. Real-time feedback aiming at assisting trainees with regularity,
size, or slope error.

Figure 6. KR feedback providing trainees with explicit indications regarding
their performance.

Feedback was chosen depending on trainees activity during
a whole exercise. Hence, feedback depends on the previous
exercise and cannot change until the end of the current
exercise. Each participant was asked to perform a series of
six exercises, an exercise being itself a series of 10 to 15 lines
to draw. The first series was not saved and allowed trainees
to familiarize with the platform. For the feedback group, the
system used this first series to decide which feedback types to
provide during the first recorded series. Our hypothesis are:

• H1 Participants in the feedback group will improve
better than participants in the no feedback group.

• H2 Variance between participants will be lower in the
feedback group than in the no feedback group.

At the end of the fifth series, we asked participants to perform
a last series. This series was performed without any feedback
from the system for the two groups, to compare their perfor-
mances in the same conditions. This last experiment should
test our third hypothesis:

• H3 Participants in the feedback group will outperform
participants in the no feedback group in real condi-
tions.

V. RESULTS

To evaluate participants performances, a dataset of expert
performances was created, gathering 22 exercises performed
by three different people. The same representation was used
in the recognition and in the evaluation processes, participants
as well as experts being represented by their feature vectors
(Table I). In a similar way of a k-Nearest Neighbors algorithm,
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TABLE I. Features computed from trainees activity.

Slope error Angle of the most sloping stroke, using real stroke coordinates.
Angle of the most sloping stroke, using linear regressions of strokes.

Regularity error

max(distance)
min(distance)

, using distances between consecutive strokes.
max(area)
min(area)

, using areas between linear regressions of strokes.
(max(area)−min(area))

µ(area)
, using areas between linear regressions of strokes.

Size error Maximum difference between stroke vertical size and stave size

TABLE II. Validation results of the recognition process on multilabel data.

Recall Precision Hamming Loss Subset Accuracy Accuracy
0.79 0.83 0.70 0.55 0.72

we evaluate our method by computing the Euclidean distance
between a trainee performance and its k-closest expert repre-
sentations. Such a method reduces potential bias induced by a
parametric modeling. In our experiment, the value k is empiri-
cally set to three. We carried a Shapiro-Wilk test on the result
data, which showed that data were not normally distributed.
Therefore, we performed the non-parametric Mann-Whitney
test to confirm the efficiency of our method.

Figure 7. Distance between trainees and expert performances over the
training iterations.

Figure 7 illustrates a significant improvement of perfor-
mances for the feedback group, from a distance of 2.88 at the
end of the first exercise, to 1.75 at the end of the fifth exercise,
while the no feedback group only slightly improved, from
a distance of 3.20 to 3.11. A two-tailed Mann-Whitney test
was performed between the two groups for the fifth exercise,
which resulted in a p-value of 0.029. We can hence confirm
our first hypothesis (H1), which is significant at a standard
0.05 threshold. Variance between participants in the feedback
group drops over the training, which implies a convergence
of trainees performances (Figure 7). Variance between partic-
ipants in the no feedback group stays high over the exercises.
These two observations confirm our second hypothesis (H2).
Results obtained in the no feedback group can be explained
by two factors: incomprehension and weariness. The task
proposed in this experiment is repetitive, and participants

in the no feedback group did not see any changes in the
training environment throughout the exercises. From the fourth
exercise, they seem to suffer from a loss of focus as they do
not see any improvement or changes that would reflect their
performances. Participants often asked how well they were
performing, indicating that they were seeking for information
reflecting their performances. People in the feedback group
could see their improvement through the KR feedback at the
end of each exercise. Moreover, a real-time feedback tailored to
the errors made in the previous exercise was provided, helping
them understand their performance, and improve on the aspects
they needed the most. Figure 8 illustrates the results of the
last exercise with participants form each groups performing
in real conditions, without feedback. We note that participants
from the feedback group outperform participants from the no
feedback group. Moreover, performances of the participants in
the feedback group only decrease from a distance of 1,75 to
the expert to a distance of 1,88 between the fifth exercise (with
feedback) and the sixth exercise (in real conditions). This result
is promising, since the dependence to the teacher syndrome
tends to make performances drop significantly when trainees
trained on aided system first perform in real conditions. How-
ever, variance between performances in the feedback group in
the sixth exercise grows compared to variance measured in
the fifth exercise. This grow in the variance is reflected by the
Mann-Whitney test, which results for this last exercise in a p-
value of 0.05486. Differences between our two groups on this
last exercise is hence significant at a 0.1 threshold, but not at a
0.05 threshold. Further experiments should thus be conducted
to fully confirm our third hypothesis (H3).

Figure 8. In real conditions (without any feedback), performances of
participants trained with, and without feedback.
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VI. DISCUSSION AND CONCLUSION

In this paper, we proposed a new model for gestural
training systems based on smart interaction. In opposition to
intelligent tutoring systems input data, our input data come
from sensors and are not directly interpretable. Our system re-
lies on a recognition module based on Naive Bayes classifiers,
which aim at recognizing pattern of errors in trainees activity.
This module provides probabilistic outputs, one per pattern of
errors, that we use to build a representation of trainees activity
in n dimensions, n being the number of possible errors. This
representation is used to determine the types of feedback to
provide to the trainee.

An experiment comparing the progression of two groups,
one with feedback and one without feedback, showed that
trainees perform better when provided with appropriate feed-
back, compared with trainees trained by practicing in real
conditions. Variance between trainees performances was also
reduced when they were provided with feedback. A last exper-
iment, where participants in the feedback group had to perform
in real conditions, showed that they still outperform trainees
from the no feedback group, and that their performances only
slightly drop from training to real conditions. These last results
should be confirmed by further experiment, but seemed to
highlight the benefits of our system to reduce the effects of
dependence to the teacher.

In future works, we will extend our recognition system
so that it should be able to detect a larger number of errors,
and thus have a more precise recognition of the gestures.
More types of feedback should be implemented so that the
system can choose the appropriate configuration in a larger
number of possible situations. An interesting issue regarding
feedback is how well it is adapted to a situation, and to a
trainee. In intelligent tutoring systems, the pertinence of a
specific feedback type is determined empirically or from study
results. One could argue that users have their own sensitivity
and comprehension (cognitive and constructivist approaches,
see Part II-B), and that systems should be able to reconsider,
as experienced human tutors do, what they thought to be
an appropriate type of feedback. We will investigate this
issue, and examine the possibility of adding another degree
of adaptation in our interactive gestural training system. We
will also evaluate the impact of this adaptation on trainees
learning experience.
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