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Abstract— The limited commercial success of 3D WIMP 

interfaces, despite ongoing efforts, leads us to question whether 

depth itself is detrimental to task performance due to, e.g., an 

increase in the amount of clutter, or if the lack of any success 

can be mostly attributed to unsuitable interactivity with input 

devices made for 2D interfaces. In this study, we evaluate a 

common interactive task -browsing a pictures folder- and 

argue that despite an increase in the number of nontarget 

distractors available on the screen when introducing 

monocular depth, there is no decrease in target detection times, 

nor are there any changes in cognitive load (as measured 

through pupillometric data). Interestingly, eye tracking data 

indicates that this is not due to a lack of fixations, as 

participants tend to spend proportionally less time fixating on 

pictures in front of them as more items become available in the 

background. Finally, our participants made significantly more 

target identification errors when there were only two picture-

layers of visible depth, when compared to four picture-layers. 

We therefore suggest adding monocular depth cues to 3D 

WIMP photo gallery or desktop pictures folder applications. 

Keywords- Interaction & Interface Evaluation, 3D WIMP; 

Visual Search;  Eye Tracking 

I. INTRODUCTION 

The WIMP interface is undoubtedly the most essential 
and common method of interaction for the everyday user 
when it comes to human-computer interaction. Bundled with 
all the major operating systems, this type of interface is the 
first thing a newcomer would be expected to use in order to 
complete everyday computing tasks. Even though there exist 
variations across the wide range of platforms that host 
WIMP desktop interfaces, the actual design has remained 
relatively unchanged for the past 40 years, despite periodic 
predictions from various research teams of shifts towards 
alternative methods of interaction [3][4][8]. However, this is 
not due to a lack of interest from academia or industry, as is 
evident by theoretical upgrades, the most popular of which is 
arguably the addition of monocular depth 
[1][5][10][14][15][17]. Nevertheless, any attempts to include 
depth have been met with either commercial failure (e.g., 
project looking glass developed by LG3D) or have not really 
seen much of a success, such as the fairly recent acquisition 
of the Bumptop desktop (www.bumptop.com) by Google.  

A. Finding a target picture: a visual search task  

When consider the task of finding a picture in a folder, 
we are, in essence, conducting a visual search task, a 
common paradigm used for studying selective attention in 
the areas of cognitive psychology and neuroscience. In these 
types of paradigms we are interested in how long it takes for 
a participant to detect a target amongst nontargets in 
environments of varying size, as well as how many target 
identification errors occur. The efficiency of the task is 
affected by both exogenous bottom-up orientation cues such 
as colour, size, movement and other features, as well as top-
down endogenous orientation cues guided by e.g., working 
memory [18]. As described thoroughly by the Feature 
Integration Theory (FIT) [16] concerning exogenous 
orientation, when the target is surrounded by homogenous 
nontargets, then the search is considered efficient, 
preattentive, and not influenced by increases in set size, 
instead causing a ‘pop-out’ effect allowing for parallel 
search. On the other hand, heterogenous nontargets (i.e., the 
target differs to some nontargets in one feature, but is similar 
in others) leads to a conjunction search, requiring the binding 
of features and hence increases in attentional resources and 
an inefficient serial search. 

 

Figure 1.  Left - Feature search, finding the black box is effortless and not 

susceptible to changes in set size; Right - Conjunction Search, the 
heterogeneous distractors lead to higher attentional resource requirements, 

making this type of search more inefficient and more susceptible to 

changes in set size 

For complex picture targets and nontargets, as one would 
expect from pictures in a folder, we can assume that the 
search will be inefficient, and heavy on attentional resources, 
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and one may therefore be tempted to simply infer that by 
adding more items in depth we would essentially be 
increasing the set size and making the search task even less 
efficient. On the other hand, past studies have shown that 
depth itself can be considered a bottom-up feature, as well as 
a guidance property during a visual search task [11][13]. For 
this reason, target detection may not suffer, as stimuli in 
depth could efficiently be ignored during the task through the 
use of a sub-nesting strategy. These strategies have been 
routinely observed when participants are asked to e.g., find a 
red ‘k’ amongst red and blue letters, which will lead to blue 
letters being ignored, although particularly salient stimuli 
(e.g., a mostly yellow picture amongst otherwise blueish 
pictures) may still capture attention, as shown by [9]. 
Regardless, there is, to the best of our knowledge, no 
compelling evidence to describe how this would affect target 
detection. 

B. Including Monocular Depth 

Studies have had mixed opinions on whether the addition 

of depth holds any real advantages in terms of interaction 

quality. There is evidence, from qualitative data, that 

suggests a positive attitude by users towards a desktop that 

includes both depth and physics [1], as well as some limited 

evidence that supports an increase in performance during 

certain tasks when depth is included in the system [15]. On 

the other hand, studies have found a decrease in 

performance in certain user tasks (such as finding a file in a 

folder) [6][7][9]. In all of these studies there are several 

merits as well as pitfalls. The study by [1], being more 

oriented towards the engineering of a physics-based desktop 

and less focused on the human cognitive limitations, 

essentially does not provide evidence as to whether such an 

interface would be indeed beneficial in terms of usability.  

The studies by [6][7] and [9] compared 2D and 2.5D, to a 

3D interface, not accounting for the changes in the 

interaction styles, and whether the 2D input device is 

unsuitable for this type of interaction (even if the y-axis was 

constrained to make interaction more simple). In other 

words, when looking for a target picture in a folder, by not 

systematically increasing the layers of visible depth, the 

researchers did not consider whether the increased amount 

of nontarget distractors was the reason it takes users longer 

to find the target in these environments, or whether it has 

more to do with interaction using a 2D mouse in 3D space.  

Therefore, rather than a holistic approach (3D WIMP vs 

2D WIMP), we instead argue the need to investigate the 

benefits of including monocular depth to each user-based 

task independently. As shown in [9], there was no benefit to 

adding depth in a folder populated with text files, however, 

when target stimuli were perceptually salient, target 

detection times decreased significantly in a pictures folder. 

Therefore, for the scope of this study we only considered the 

potential benefits of a 3D interface in browsing the pictures 

folder for a target picture.  

II. CURRENT STUDY  

In this paper, we investigate the impact of depth on target 
detection times and errors by developing a 3D WIMP 
pictures folder, and systematically increasing the number of 
visible layers of images from two to four. Since we were 
interested in seeing whether increases in visible depth, and 
hence set size, would lead to more items being attended 
during the trial as one would expect from a serial search, or 
whether participants effectively ignored the increased visible 
layers as a form of a sub-nesting strategy, we used an eye 
tracker to explore whether there is a relationship between 
depth and the number of fixations on each layer of visible 
depth, as well as measure any changes in pupil size, which 
has been shown to be a good reflection of mental effort [2]. 

 

III. METHOD 

A. Participants 

Having received ethical approval from the University of 
Reading School of Psychology and Clinical Language 
Sciences, we recruited 18 participants (15 women, 3 men, 
age range: 21 - 27, mean age: 24.23), to take part in our 
experiment. All participants had normal or corrected to 
normal vision, while none claimed to suffer from colour 
blindness or any other disorders that would impact the 
selective attention task. The participants were asked to sign 
consent forms, asked to read the information sheets, and 
were debriefed at the end of the experiment.  

B. Materials and Design 

The 3D pictures folder (Figs. 2 & 3) was built using 
Javascript and the three.js library (a popular retained mode 
library for 3D development) and was optimized to run well 
on the Google Chrome web browser. The folder was then 
populated with 304 pictures of 190x190 pixel resolution 
made up of people, groups of people, animals, and various 
objects. Each visible layer was made up of 16 pictures, while 
the groups themselves were of equal size and placed in the 
environment following a random uniform distribution.  

Figure 2.  The 3D WIMP pictures folder with four visible layers 
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The space between each picture on the horizontal axis 
was set to be 1/10th of the total screen width (which was 192 
pixels when the layer was as “close” to the screen as 
possible), while the space between each picture on the 
vertical axis was set to 1/20th of the total screen height 
(which was 60 pixels when the layer was as “close” to the 
screen as possible). The distance between the layers was set 
to ten default arbitrary units in 3D “depth” as set by the 
three.js library.  

 

 
Figure 3.  The 3D WIMP pictures folder with two visible layers 

Since the target was selected randomly for each trial, 
differences in low-level (bottom-up) feature complexity and 
semantic differences with nontargets was not controlled, 
however, we expect that the random sampling of pictures 
from multiple categories, as well as the random selection of 
the target in each trial leads to a decreased likelihood of our 
results being affected from large differences in salience 
between target and neighbouring nontargets. 

Figure 4.  A ray-casting algorithm was used to measure the number of 
fixations on each layer 

The mouse interaction purposely resembled the classic 
2D WIMP interface, even though movement occurred along 
the z axis (in and out of the environment) using the mouse 
scroll wheel. This movement was essentially a translation of 

image on the z-axis, and no transition animations were used. 
Rotations along the x or y axis were not implemented, in 
order to decrease the overall complexity of interacting in a 
3D environment using a 2D input device [12]. Rotations on 
the z axis were implemented, however this feature was 
disabled during the experimental stage in order to facilitate 
the overlay of eye tracking data to the environment.  

An Eyelink 1000 eye-tracker (SR Research, Montreal) 
was used to record fixations. The chin rest was placed 70cm 
away from a large 28” monitor (16:10 aspect ratio), with a 
screen resolution of 1920x1200 pixels, while the sampling 
rate for the eye tracker was set to 500 samples every second. 
Calibration was kept at < 0.50 of error, (~ less than half the 
width of a human thumb at arm’s length).  

Our software recorded the number of intersections 
between eye fixations and pictures, as well as pupil size, with 
iterations occurring asynchronously every millisecond, with 
~30ms maximum delay. The fixation measurement was 
implemented using a ray casting algorithm that would 
measure a fixation in the same way a mouse click would 
work when selecting a picture (Fig. 4). The target detection 
times were extracted from the eye tracking data once a 
fixation had occurred on the target that subsequently led to 
its selection using the mouse. Target identification errors 
were measured by the amount of clicks on a nontarget during 
each trial. The whole process has been summarised in Fig 6. 
 

C. Procedure 

After a small automated tutorial on the user interface, 
participants were presented with a random target in the 
beginning of each trial. Once they felt they were ready to 
begin, participants were instructed through text on the screen 
to press the spacebar and start the trial (Fig. 5).  

 

 
Figure 5.  A random target would appear before the beginning of every 

trial. Participants were expected to maintain the target in working memory 

during the visual search task 

Upon target detection, the participants would click on the 
target and proceed to the next trial, if they made an error and 
clicked on a nontarget, that picture would be coloured red to 
provide feedback to the participant that they had made a 
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recognition error. Furthermore, if the participant felt they 
were unable to find the target image they could choose to 
skip the trial (this was logged as a failed trial). At the end of 
either 64 trials or one hour, the experiment would end. 
Furthermore, participants were allowed to take short breaks 
every 10 minutes, hence, the eye tracker was calibrated and 
validated before each block of trials. Only seven participants 
managed to finish all the trials, while the range overall was 
from 32 to 60 (mean = 54.33, σ = 11.31). 

 

 
 

Figure 6.  System Architecture illustrating the connections between the 

eye tracking and experimental machine, as well as the process of extracting 
playback information and data for the analysis 

IV. RESULTS 

The target detection time (RT) data did not follow the 
normal distribution, therefore, the non-parametric Kruskal-
Wallis test was used in place of a one-way ANOVA, with 
visible depth as the independent categorical variable with 
three levels (two - four layers of visible depth), and RT as 
the dependent continuous variable. We failed to find any 
evidence to support that increasing the layers of visible depth 
lead to an increase in RT, since our results were not 
significant. However, using Kruskal-Wallis to investigate 
whether there was a significant main effect of depth on target 
identification errors; we found a significant result (H = 6.8, p 
= 0.03), while pairwise comparisons using Dunnett’s 
procedure (with two layers of visible depth as the control), 
revealed that trials with four layers of depth produced 
significantly fewer errors than trials with two layers of depth 
(p = 0.05). This was not the case when comparing trials of 
two layers with trials of three layers of depth. 

To investigate the results further, we took the ratio of 
fixations from our eye tracking data between the first layer of 
depth and all other layers. Formally this can be expressed as: 

∀i ∈ {0,…,n}. Ri = Fi / (Fi + Oi) where R is the vector of 

fixation ratios, F is a vector populated with number of 
intersections on the first layer, and O is a vector populated 

with number of intersections on other layers. Even though 
the fixation ratio data did not fit the normal distribution, we 
successfully transformed the data to satisfy the normality 
assumption by simply raising all the values to the power of 
two. This was then confirmed subjectively using QQplots 
and objectively using Shapiro-Wilk (p > 0.05), allowing us 
to use a one-way ANOVA for the analysis. The test revealed 
that the layers of visible depth had a significant effect on 
fixation ratio (F(2, 132) = 11.63, p < 0.001), while multiple 
comparisons using the Tukey test reported significantly 
lower ratio of first layer to other-layers fixations when there 
were three visible layers of depth compared to two visible 
layers of depth (Mdiff = -0.07, 95% CI, [-0.13, -0.01], p = 
0.02), as well as when there were four visible layers of depth 
compared to two layers of depth (Mdiff = -0.12, 95% CI, [-
0.18, -0.06], p < 0.001). We did not, however, find a 
significant difference in fixation ratio when comparing three 
and four layers (Fig. 7). Finally, average pupil size was also 
extracted for each level of depth and compared using 
Kruskal-Wallis (since the data, again, did not fit the normal 
distribution), however, the results were not significant, 
indicating no changes in pupil size as a result of increased 
visible depth. Finally, it is worth mentioning that we did not 
find an increase in target detection times and errors in 
relation to trial number (i.e., there was no measurable 
performance decrease due to fatigue). 

Figure 7.  Ratio of fixations between the first layer of depth and all other 
layers, as visible leayers of depth increase.  

(Error bars are 95% CI) 

V. DISCUSSION 

The result of our study supports that increases in the item 
set size (in this case, pictures) caused by adding more layers 
of visible depth does not impact overall target detection 
times. One may be tempted to assume that this is due to a 
top-down sub-nesting strategy, where pictures in depth are 
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effectively ignored in order to support the very serial and 
inefficient search that one would expect from complex 
pictorial stimuli. This is not entirely true, however, as our 
eye tracking data revealed that by making more layers of 
visible depth available to participants, fixations on the first 
layer decreased significantly (at least when comparing three 
or four layers with two layers of depth).  

We hypothesise that the decreased ratio of fixations on 
the first layer compared to other layers is either the result of 
(a) randomly occurring (due to the random distribution of 
items) highly perceptual feature contrasts in depth that 
capture attention (bottom-up), or (b) nontargets with features 
that resemble the target stimulus that may be harder to 
differentiate when unattended in depth (possibly because of 
the smaller picture size), capturing attention due to feature 
similarity to the target in memory (top-down). To further 
explore this, we conducted an exploratory meta-analysis of 
the data in order to see if increased depth also led to 
increased selection of items in depth. Much to our surprise it 
did not, illustrating that the relationship is very complex and 
warrants further investigation. Finally, increased layers of 
visible depth lead to decreased numbers of target 
identification error, but only when comparing two layers to 
four layers of depth.  

In conclusion, contrary to previous studies, which found 
depth to decrease performance in a 3D WIMP, our results are 
more optimistic, and suggest that adding depth does not 
impact target detection for this particular type of user action 
(find a picture in a folder). However, there is undoubtedly 
strong evidence to support that 3D WIMP interfaces do not 
work well (as can be seen by a plethora of previous studies), 
probably due to the lack of a suitable input device that can 
facilitate interaction in three-dimensions. Our results do not 
contradict past studies, per se, but rather indicate that if a 
more suitable 3D input device was manufactured, then 3D 
WIMP picture folders and photo galleries would not lead to a 
degradation of performance in the task of target detection. 
This supports the need for further research into novel devices 
that can perhaps replace the 2D mouse, although past 
attempts have failed in this regard (e.g., the 3D mouse is hard 
to use long-term since it leads to fatigue). Finally, we present 
these results with caution, as our study focused exclusively 
on usability and performance, rather than user experience. 
Therefore, we cannot argue that users would find a 3D 
picture folder compelling, even if it does not lead to 
performance degradation. In this regard, further research 
using qualitative methods would be appropriate, as well as a 
suitable next step for this research topic. 
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