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Abstract—Understanding users’ behavioral patterns and quanti-
fying users’ expertise have a myriad applications, from predicting
user actions and tailoring the environment to that specific user, to
detecting masquerade attacks and assessing learning outcomes.
Toward this end, we have conducted a study on three Unix
command datasets, totaling 263 users and more than 1 million
commands. We first introduce the notions of command expertise,
command line expertise, and command category. Next, we use
these metrics, combined with other attributes to define and
quantify several user expertise metrics, e.g., category breadth,
command line expertise. Our study has revealed many Unix
commands characteristics, e.g., Unix command can be grouped
into 25 categories; file management is the most common activity;
the most commonly used commands are two-characters long. Our
study has also revealed many insights into user expertise and
behavior, such as: command line length is not an indicator of user
expertise; users activity is highest on Monday and decreases every
day through Saturday, picking up on Sunday; peak command
usage hours are 11 a.m., 1 p.m. and 4 p.m.; development activities
happen mostly in the afternoon.

Keywords–User behavior; user expertise; Unix; empirical study.

I. INTRODUCTION

Unix, Unix-like, and Linux operating systems dominate
the market in segments where human-computer interaction is
centered around command-line; specifically, the market share
of these operating systems, in January 2016, was 66.9%
(server), 100% (supercomputer) and 100% (mainframe) [1].
Understanding Unix command usage and the behavior of Unix
users has many applications: repetitive sequences of commands
can be transformed into scripts for correctness and ease of
use; temporal patterns can expose busy and idle periods hence
allowing capacity to be scaled accordingly; and noticing that a
user U ’s commands or temporal access patterns are markedly
different compared to U ’s prior commands and usage patterns
can indicate a masquerade attack [2] (i.e., U ’s account has
been compromised and is being used by a malicious user M ).
Quantitative measures of user expertise can serve as a base
for comparing users (e.g., who are the most competent or
efficient users?), inferring user roles (e.g., student vs. seasoned
developer vs. system administrator) or assessing how users
learn.

Few studies have focused on understanding user behavior
based on command line usage. Rather, prior studies’ focus
has been on: masquerade detection (malicious users taking
control of a legitimate user’s account) [3][4][5][6][7][8][9];

user session characterization [10] in terms of commands per
session, errors encountered and directories explored; or pre-
dicting high-level user actions [11]. In Section II, we provide
a detailed comparison with related work. However, none of
these previous studies have attempted to quantify user or
command expertise and study temporal patterns associated
with users/expertise.

We start by describing the datasets and the approach we
have used to identify commands and their arguments (Sec-
tion III). Identifying individual commands is nontrivial due
to several reasons, such as the myriad ways in which Unix
commands can be chained or used as arguments for other
commands.

In Section IV, we discuss the methodology we have used
for quantifying expertise and assigning expertise values to
commands and users. First, we assign an expertise value
to each command — the higher the value, the higher the
probability that the command is used by more advanced users,
or requires more advanced knowledge. Next, using command
expertise, we assign expertise values to entire command lines.
We then group commands into categories such as file man-
agement, editor, and compiler. Based on these metrics, we
introduce metrics for users expertise: user category breadth
to quantify user expertise in terms of the number of different
categories employed by that user, as well separating users into
high- and low-expertise groups.

In Section V, we present our findings. We first characterize
commands in each dataset; we found that file management
is the principal activity, with cd and ls accounting for
substantial percentages of user commands. We found that the
most common command length is two; that command line
length is not necessarily an indicator of expertise, and that
commands/users permit a natural separation into high- and
low-expertise commands/users.

We also analyzed temporal patterns in one of the datasets
(the only dataset to contain command timestamps). We found
that command activity tends to decrease from Monday until
Saturday, and increase slightly on Sunday; that peak command
usage hours are 11 a.m., 1 p.m. and 4 p.m.; and that devel-
opment activities (use of editors and compilers) peaks in the
afternoon.

II. RELATED WORK

Schonlau et al. [3] have used various statistical methods to
detect masquerade attacks by finding “bad data” (attacker’s
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TABLE I. FEATURE AVAILABILITY FOR EACH DATASET.

datasets Mahajan Greenberg Schonlau
Users 45 168 50
Commands per user 709* 1,441* 15,000
Command timestamp X
Session start/end X
Command arguments X X
Command chaining X X
User Group X

* Median number of commands per user.

commands) inside sequences of “good data” (benign com-
mands issued by a legitimate user). Other studies have sim-
ilarly used machine learning or grammars for masquerade de-
tection [4][5][6][7][8][9]. Greenberg [10] has collected traces
of 168 users via a modified csh shell; they partitioned the
users into four non-overlapping categories (novice program-
mers, experienced programmers, computer scientists and non-
programmers) and characterized user sessions in terms of com-
mands per session, errors encountered and directories explored.
Chinchani et al. [12] has focused on the reverse problem
of generating user models so that synthetic command traces
can be generated automatically. Fitchett and Cockburn [11]
developed a predictor model for revisitation/reuse based on
user actions (commands, window switching, URL accesses).

Note that our focus is different compared with the afore-
mentioned efforts. Rather than finding suspicious/anomalous
commands for purposes of masquerade detection, we aim to
answer more general questions: how can command expertise,
command line expertise, and user expertise be operationalized?
How can users and commands be grouped into categories
that generalize and are stable across datasets? What are the
temporal patterns associated with commands, command cate-
gories, and users, e.g., when (time-of-day/day-of-week) does
development happen, as opposed to editing, and when are
experts active compared to novice users?

III. DATASETS

Our analysis is based upon three main datasets — collected
by other researchers [9][3][10] — totaling 263 users and
1,023,993 commands. Table I provides an overview of the
datasets and the features they include: each dataset consists of
real commands collected from actual usage — ranging from
709 up to 15,000 commands per user. The dataset attributes
vary: while Mahajan’s set contains a timestamp for each
command, the other sets do not; conversely, Greenberg’s set
has session start and end markers while the other two do
not. Finally, Mahajan and Greenberg’s sets contains command
arguments, including the chaining of multiple commands on
the same line (e.g., via the pipe operator), while Schonlau’s
only contains a command prefix (first 8 characters).

We now describe each dataset, its features, and the method-
ology we used to extract characteristics from that particular
set.

1) Mahajan: The richest, most detailed data was gathered
by Mahajan [9]: command traces for 45 users. Each command
has a timestamp and the entire command line, e.g., including
complex pipes, was captured. To parse each line, we first
separate the command portion into sections of commands by
pipes (the ‘|’ character) and logical commands such as ‘&&’.

After separating a line into sections, each section contains a
command, along with zero or more parameters. For example,
the following line will be separated into 3 sections:

ls -l | grep key | less

Backquotes or “backticks” are commands that are executed
before the rest of a line, and their result is “pasted” at their
position in the line. For example:

vim notes.`date +%F`

Hence we look for backquotes in each section and treat it
as a separate section; we find the command and its parameters
(as described below) and we treat the whole section as an extra
parameter for the section which contained the backquotes.

To count the number of parameters for each command,
we separate each section by space and redirection characters
(‘>’, ‘>>’, ‘<’, and ‘<<’). As mentioned above, each
section is split based on space or redirection characters.
Redirection to/from a file is also considered a parameter. In
some rare cases there are two commands per section such
as sudo apt-get install blah which contains two
commands (‘sudo’ with 0 parameters and ‘apt-get’ with 2
parameters). Only two commands were found that used such
a feature: ‘sudo’ and ‘time’.

To conclude, in the aforementioned example, we detect 3
commands: ‘ls’ with 1 parameter, ‘grep’ with 1 parameter,
and ‘less’ with no parameter. Notice that all commands
after the first pipe have one more parameter than immediately
visible, and that is because the other parameter has been piped.

Finally, we proceeded to identifying sessions, i.e., start
and end of time intervals when users started the command
line interaction. While Mahajan’s dataset is very rich in most
aspects, it does not explicitly record session information, so
to identify sessions we computed the time intervals between
consecutive commands, plotted their distribution, and visually
identified cut-off points hence session begin/end.

2) Greenberg: This dataset consists of 168 Unix users [10].
Like Mahajan’s dataset, it contains command parameters, and
complex command lines, but it does not contain timestamps
like Mahajan’s. It does however contain session delimiters.
Another feature of this dataset is that it categorizes users
into 4 categories based on their expertise. In detail, there
are 52 computer scientists, 36 experienced programmers, 55
novice programmers and 25 non-programmers respectively.
This makes it particularly valuable in evaluating our expertise
extraction methods. Next, we show an example of the infor-
mation contained in Greenberg’s dataset (the dataset contains
more information which is irrelevant to this study and has been
removed from the example for clarity).

S Wed Feb 18 16:37:25 1987
E Wed Feb 18 16:56:22 1987

C date
C nroff terry.abs | enscript
C p audio.mail

S Fri Feb 20 12:41:39 1987
E Fri Feb 20 14:24:06 1987

C mail
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C rlogin sun-fsa
C rlogin sun-e
C rlogin sun-b
...

3) Schonlau: Although this dataset is large, containing
15,000 command traces per user for 50 users, it is limited
in three ways. First, the parameters for each command are
omitted; this leads to missing complex pipes and chains of
commands, which can be used to assign user expertise. Second,
due to the method used for gathering data, system commands,
e.g., commands invoked from C programs via system() or
exec() were included. Finally, the command traces do not
have timestamps, so processing any temporal information such
as number and duration of each user session is impossible.
On the flip side, parsing this dataset is trivial, since each line
contains a simple command, with no parameters, no loops, no
pipes, etc.

IV. EXPERTISE

We used the following approach for developing a uniform
notion of expertise across the three datasets: we first assign
an expertise value E(C) to each command C, then for each
command line L, including lines that consist of the chainings
commands C1, . . . , Cn, we assign an expertise coefficient
lCoef(L) based on constituent command(s) expertise as well
as the command chaining information.

Command Categories. We group commands into cate-
gories, e.g., vim or emacs are categorized as editor com-
mands, while ping or traceroute are network commands,
and so on. In total we have defined 25 categories. The number
of categories varies little across datasets: 24 for Mahajan, 23
for Schonlau and 18 for Greenberg (Table II) which indicates
that our category definitions are stable.

A. Command and Line Expertise

1) Assigning Expertise to Commands: Due to inherent
differences among the three datasets, they could not be merged
into one dataset, and thus assigning expertise was performed
separately on each of them. We first measure the number of
users that have used each command (U ), along with the number
of times each command was used (Freq). We also manually
assign commands to categories based on type of application.

We group U into 4 bins and Freq into 3 and assign an
expertise value to each bin (Uexp and Freqexp) as shown
on the left of Figure 1. A level of expertise is assigned to
each category (Cexp) as shown on the bottom of Figure 1,
e.g., browser commands have expertise value 4, network and
svn (version control) have value 10, while compiler commands
have expertise value 14. Then, for each command we assign an
intra-category expertise adjustment (Iexp), as explained next.1
The reasoning behind the expertise assignments is:

• For user breadth Uexp, the more people utilizing a com-
mand, the less likely it is to require high expertise. At
the same time, if a command is used only by a single
person, there is a high chance that it is highly personal,
e.g., scripts. We believe the expertise associated with this

1Expertise values were assigned based on consensus among authors.
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Figure 1. Expertise assigned to bins of a) command frequency (top left); b)
user breadth (top right); and c) command category (bottom) for the Mahajan

dataset.
bin should be lowered, but not lower than the bin with
highest number of users.

• For Freqexp, a command that is used less frequently is
likely associated with higher expertise.

• A category of commands Cexp is the highest indicator
of expertise, e.g., a compiler command is much more
complicated than a browser command.

• Within a category, there are certain commands that require
a higher expertise to be used; these commands are given
extra expertise points in intra-category expertise Iexp.

Therefore, we use the following formula for assigning
expertise to each command Ci:

Exp(Ci) = Uexp(Ci) + Freqexp(Ci) + Cexp(Ci) + Iexp(Ci) (1)

While the most influential element of each command’s
expertise is the category it belongs to, other elements can
boost or hinder its expertise and thus provide a wide range
of values. For example, in Schonlau’s dataset, expertise values
range from 6 to 22.

2) Assigning Expertise to Lines: For the dataset of Schon-
lau et al., each line’s expertise is the same as the command
in that line. But for Mahajan and Greenberg datasets, we
need a measure to combine multiple commands’ expertise
into a single value. Adding up all the expertise is not a great
idea since it can highly inflate the expertise values, and it is
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certainly misleading, since someone who uses 10 commands in
a single line, does not necessarily possess 10x greater expertise
in comparison to another person who uses the same commands
on separate consecutive lines. We believe that the former’s
expertise is merely a fraction more than the latter’s and that
is due to their ability to combine multiple commands in a
single line and perform complicated tasks. To this end, we have
developed the following line expertise computation scheme:

lCoef(li) =

{
1 + min(|Commands(li)|,4)

10
, if li contains backquotes

1 + min(|Commands(li)|,4)−1
10

, otherwise
(2)

Coef(Cj) = 1 +
min(|Params(Cj)|, 4)− 1

10
(3)

Expertise(li) =

lCoef(li)× max
Cj∈Commands(li)

Exp(Cj)× Coef(Cj) (4)

Here, li is any given line, Cj is a member of the set
of commands within li, denoted by Commands(li) and
Params(Cj) gives the set of parameters for Cj . lCoef(li) is
an expertise coefficient for line li which gives a 10% boost to
li’s expertise for each extra command in li, up to 4 commands;
it also gives an extra 10% boost if backquotes are used in li.
Coef(Cj) is a command coefficient which gives a 10% boost
to Cj’s expertise for each extra parameter provided to Cj , up
to 4 parameters.

3) High- and Low-Expertise Commands: To provide a
straightforward binary separation into “easy” and “advanced”
commands, we use the command expertise distributions to
divide all commands into low and high expertise groups. These
in turn will be used to support separating users into low- and
high-expertise groups. We present the results in Section V-A3.

B. User Expertise
We now provide definitions of user expertise.
1) User Category Breadth: User Category Breadth (UCB),

i.e., the number of different categories they actively use, is
also an indicator of expertise. To measure UCB, we identify
the category of commands for each user, and apply a minimum
number of commands threshold to weed out those cases where
accidental or extremely infrequent use of commands would
count toward category use. Specifically, we used 1.5% of the
average number of commands for each user in each dataset
to define the aforementioned threshold — this translates to
20 commands in Mahajan’s dataset and 250 commands in
Schonlau’s, i.e., to count a category C toward a user U ’s
UCB, U has to have used at least 20 and 250 commands in
C, respectively.

2) High- and Low-Expertise Users: To distinguish different
users, we divide them into low and high expertise groups
based on high- and low- command line expertise mentioned in
Equation (2). We found a clear delineation between the high-
and low- expertise sets; we present the results in Section V-B2.

V. RESULTS AND DISCUSSION

We now proceed to discuss our findings.

TABLE II. SUMMARY OF COMMAND CHARACTERISTICS.

Mahajan Greenberg Schonlau
Total Commands 56,261 313,169 750,000
Unique Commands 1,218 4,117 856
Categories 24 18 23

TABLE III. TOP-20 COMMANDS FOR EACH DATASET.

Rank Mahajan Greenberg Schonlau
Command % Command % Command %

1 cd 15.3 ls 12.3 sh 8.7
2 ls 15.0 cd 8.8 cat 4.3
3 git 3.7 pix 6.2 netscape 4.3
4 vim 3.3 umacs 4.9 generic 4.1
5 sudo 3.1 e 4.2 ls 4.0
6 grep 2.8 rm 3.1 popper 3.3
7 vi 2.6 fg 3.1 sendmail 2.8
8 gvim 2.3 emacs 3.0 date 2.7
9 ssh 2.2 more 2.8 rm 2.3
10 mm 2.2 lpq 1.9 sed 2.1
11 rm 2.0 mail 1.8 nawk 2.0
12 java 1.9 lpr 1.8 expr 1.9
13 perl 1.6 cat 1.8 tcsh 1.8
14 javac 1.5 cp 1.4 grep 1.7
15 find 1.4 ps 1.3 tcpostio 1.4
16 clear 1.2 nroff 1.2 uname 1.4
17 mount 1.1 who 1.1 ln 1.3
18 cp 1.1 make 1.0 hostname 1.3
19 cat 0.9 fred 0.9 gcc 1.3
20 exit 0.8 u 0.8 true 1.3

A. Command Characteristics

1) Command Distribution: Table II shows the summary of
each dataset. Although the Schonlau dataset has the most com-
mands, it has the fewest unique commands. Note how, despite
differences in datasets (e.g., provenance, year of collection,
Unix system used) they have similar numbers of command
categories, which indicates that our category definitions are
quite stable across different Unix user populations.

Table III shows the top-20 most used commands and their
percentage in each dataset. File management commands (ls,
cd, cp, and rm) are the most popular by far, and they dominate
the Mahajan and Greenberg datasets (more than 20% of their
commands fall into this category). The Schonlau dataset is
more evenly distributed, but file management is popular there
as well.

Furthermore, we investigate whether commands differ be-
tween user groups. Table IV shows the top-20 most used com-
mands and their percentage of user groups in the Greenberg
dataset. For groups computer scientist, experienced program-
mer and non programmer, similar to the whole dataset, file
management commands contribute the most, but for the novice
programmer group, the compiler-related command pix and
(Pascal interpreter and executor) and editor command umacs
are the most used commands.

Table V shows top-5 most used categories and their per-
centage in each dataset. The observations are similar to the
previous observations on commands: file management is preva-
lent, with Mahajan and Greenberg’s datasets having a higher
concentration of such commands compared to Schonlau’s.

The Greenberg dataset comes with an assignment of users
into groups: computer scientists, experienced programmers,
novice programmers, and non-programmers [10]. Therefore,
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Figure 3. Distribution of command line length in Mahajan and Greenberg datasets (left) and the four user groups of the Greenberg dataset (right).

TABLE IV. TOP-20 COMMANDS OF EACH CATEGORY IN
GREENBERG DATASET.

Rank Scientist Experienced Novice Non-Programmer
Command % Command % Command % Command %

1 ls 14.6 cd 12.0 pix 24.4 ls 15.8
2 cd 10.5 ls 11.8 umacs 19.7 emacs 10.6
3 e 5.2 e 5.8 ls 7.8 nroff 9.1
4 fg 4.4 fg 4.6 rm 3.4 cd 8.5
5 rm 3.0 more 4.1 u 3.1 e 5.3
6 mail 2.8 rm 2.7 cd 2.9 rm 4.0
7 emacs 2.4 make 2.7 cat 2.7 ee 3.8
8 lpq 2.2 emacs 2.5 more 2.6 more 3.4
9 more 2.1 lpr 1.9 script 2.4 lpr 3.0
10 ps 1.8 l 1.9 lpr 2.4 hpr 2.8
11 f 1.6 cat 1.8 lpq 2.0 ptroff 2.2
12 cat 1.6 ada 1.8 cp 2.0 lpq 1.9
13 who 1.5 examples_vax 1.7 emacs 1.8 ps 1.8
14 mv 1.1 cp 1.5 pi 1.5 cp 1.4
15 lpr 1.1 a.out 1.3 p 1.2 tbl 1.4
16 man 1.1 rwho 1.3 mail 1.0 w 1.3
17 rlogin 1.0 mail 1.2 fred 1.0 col 1.2
18 cp 1.0 lpq 1.2 logout 0.8 mail 1.2
19 page 0.9 bye 1.2 pdpas 0.7 rr 1.1
20 fred 0.9 ps 1.2 man 0.6 spell 1.1

TABLE V. TOP-5 CATEGORIES FOR EACH DATASET.

Rank Mahajan Greenberg Schonlau
Category % Category % Category %

1 fileman 39.0 fileman 28.3 pattern 13.7
2 etc. 8.4 editor 14.7 framework 12.2
3 editor 8.2 info 13.1 etc. 12.1
4 pattern 5.8 etc. 10.7 system 11.8
5 compiler 5.1 compiler 9.2 fileman 10.1

TABLE VI. TOP-5 CATEGORIES FOR USER GROUPS OF THE
GREENBERG DATASET.

Rank Scientist Experienced Novice Non-Programmer
Category % Category % Category % Category %

1 fileman 32.3 fileman 31.7 compiler 27.4 fileman 31.2
2 info 14.4 etc. 13.2 editor 23.3 editor 21.1
3 etc. 11.8 info 12.6 fileman 17.2 info 13.1
4 editor 10.6 editor 10.7 info 11.6 Tex 11.8
5 system 9.1 system 8.4 system 7.4 etc. 11.1

for this dataset alone, we have investigated category distri-
bution for each group. According to Table VI, we found
that computer scientists and experienced programmers’ groups
have similar top categories, e.g., file management is the most
frequent used commands. However, the novice programmer
group used compiler and editor commands most often, whereas
non-programmers, as expected, used file management, editor,
help (info) and TeX (text processing) commands most often.

2) Command Line Expertise: We now illustrate how com-
mand line expertise differs among user groups. We classified
the Mahajan dataset into 3 groups: experienced programmer,
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Figure 2. Beanplot of average command line expertise of each user group in
Mahajan’s dataset.

novice programmer and non programmer; we performed this
classification manually by sampling each user’s commands
and evaluating the categories and expertise of the sampled
commands. Figure 2 shows the bean-plot of average command
line expertise of each group in Mahajan. The shape of the
bean-plot is the entire density distribution, the short horizontal
lines represent each data point, the longer thick lines are the
medians, and the white diamond points are the means. While
the results show that the peak density of expertise is higher
for the experienced users and then for novice programmers,
a Mann-Whitney U test shows that the differences are not
statistically significant, which very well may be due to our
small sample size (a total of 45 users).

We use command line length as a metric to check the
difference between the Mahajan and Greenberg datasets, as
well as the difference between user groups in Greenberg.
According to the left side of Figure 3, command line length 2
is the most frequent pattern for both Mahajan and Greenberg
which is expected, as commands ls and cd have been used
most often. For scientist and experienced programmers of
Greenberg dataset, we found a similar pattern. But for novice
programmers, command line length 10 is the most used, while
command line length 9 has similar frequency with command
line length 2. Upon investigation, we found that since novice
programmers were learning how to program, they used com-
mands umacs and pix (with corresponding arguments to
reach line lengths 9 and 10) more often, which result in
the different trend compared to scientists and experienced
programmers.

3) High- and Low-Expertise Commands: Finally, we inves-
tigate the distribution of expertise for each dataset; in Figure 4,
we show the result. We set the median of expertise values
(which empirically is 11 across all three datasets) as the
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threshold to separate low from high command line expertise.
Note that, since the same value, 11, emerges as a natural
threshold in all three distributions, we gain confidence in the
stability of our command expertise metrics.

B. User Characteristics

1) User Category Breadth: We analyzed Mahajan’s dataset
as described above for UCB classes. The results are shown
in Figure 5 (left). We observe 3 major patterns. First, there is
a group of people who use 3 or fewer categories of commands.
Second, there is a large group of people who use between 4
and 8 categories, and finally the group of people who use
more than 8 categories. We name these classes low, medium,
and high breadth classes respectively. In Mahajan’s dataset, we
found that 6 users are a member of low-breadth class, 10 are a
member of high-breadth class, which leave the rest (29 users)
in the medium-breadth class.

For Schonlau’s dataset the pattern occurs again, but at
different points. Here the low breadth class spans up to 12
categories and consists of 7 users. The high breadth class
starts from 19 categories and consists of 1 user. This leave
the medium group with 42 people and a range of 12 to 19
categories.

For the dataset of Greenberg, we still have similar pattern
with different points. The low breadth class spans up to 3
categories and consists of 8 users. The high breadth class starts
from 10 categories and consists of 29 users. Then the medium
breadth class group with 131 users and a range between 3 to

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

UCB Greenberg

Number of Categories

D
en

si
ty

scientist
experienced
novice
non−programmer

Figure 6. Kernel density function for the command category distribution of
each user class in Greenberg’s dataset.

10 categories. While the values are different, the pattern of
two small classes with low and high breadth and a larger class
of medium breadth is still prevalent.

We also analyzed category usage in the different user
groups of Greenberg’s dataset. Figure 6 shows the kernel
density function for the command category distribution of
each user group. We found that novice programmers and
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Figure 8. Frequency of low and high expertise commands used by different
classes of users at different days of the week.

non programmers employ fewer command categories than
scientists and experienced programmers, which is intuitive.

2) High- and Low-Expertise: We now show the results of
command line expertise per user. Figure 7 shows the result.
Greenberg and Schonlau datasets have similar trends, i.e., most
users have only one peak value between 11 and 12; for the
Mahajan dataset, we found similar trends, i.e., two peak values
between 11 and 13. We believe the similarities across datasets
validate our choice of expertise metrics.

C. Day-of-week Command Patterns

To understand temporal patterns for command usage, we
studied Mahajan’s dataset (the only dataset that come with
timestamps). This process is performed for all users, and then
for each breadth category separately.

Figure 8 shows the distribution of command usage over
days of week. The red lines depict high expertise commands’
frequency while the blue lines indicated low expertise com-
mands’ frequency. The week starts on Monday. While the
frequency tends to decrease from Monday through Sunday, we
need to split users into expertise levels to better understand
trends. Interestingly: (a) low- and medium-expertise users
show little variation (slight decrease) as the week progresses,
while for high-expertise users the trend is clear and decreasing;
(b) Sunday usage is higher than Saturday usage.
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Figure 9. Frequency of low and high expertise commands used by different
classes of users at different hours of the day.
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Figure 10. Histogram of temporal distance between consecutive commands
for high-expertise users in the Mahajan dataset: x-axis is intercommand time

in minutes, y-axis is frequency.

D. Time-of-day Command Patterns

The distribution of command usage over hours of day is
shown in Figure 9. The red lines depict high expertise com-
mands’ frequency while the blue lines indicated low expertise
commands’ frequency. There is a clear spike in activity around
11 a.m. and a rise in activity from 1 p.m. to 4 p.m. But when
we split the users based on UCB, we observe different patterns
for medium and high breadth classes. The Medium breadth
class shows spikes of activity around 1 p.m and 3 p.m., while
the high breadth class shows a spike around 11 a.m., and a
relatively high activity from 1 p.m. that peaks at 4 p.m.

E. Inter-command Time

We found that users interact with the shell in sessions, i.e.,
bursts of commands coming in rapid sequence, followed by
long pauses. We studied inter-command time to get a sense
as to how temporally close the commands are. Figure 10
illustrates this for high-expertise users in the Mahajan dataset.
Note that the distribution of inter-command distances is highly
skewed towards zero and has a very long tail (we trimmed both
ends of the distribution — less than 30 minutes and more than
6 hours — in order to have a clearer view). As we can see in

321Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-468-8

ACHI 2016 : The Ninth International Conference on Advances in Computer-Human Interactions



20
0

40
0

60
0

80
0

10
00

Days of the week

F
re

qu
en

cy

Mon Tue Wed Thu Fri Sat Sun

admin
compiler
editor
framework
info
network
pattern
shell
system

Figure 11. Frequency of several command categories used by all the users at
different days of the week.
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Figure 12. Frequency of several command categories used by all the users at
different hours of the day.

the figure, the distribution within the defined range still looks
mostly exponential.

F. Category Patterns
We also analyzed the usage pattern of categories. Figure 11

shows category frequency for each day of week: Monday and
Thursday are the days with the highest activity. Moreover,
“editor” is the most popular category.

Figure 12 shows the time-of-day results: 6 a.m. is the “qui-
etest” time while there are usage spikes at 11 a.m. and 3 p.m.

VI. CONCLUSION

We have a performed a study on three sizable datasets
of Unix command usage. This is the first study to opera-
tionalize command expertise and user expertise via several
metrics. Based on these metrics, we found several interesting
observations on both command and user characteristics that are
consistent across datasets, which strengthens our belief that the
metrics are stable. Finally, we performed a study on one of the

datasets that reveals user behavior and command usage across
time of day and day of week.

We believe that our definitions and findings can be used
in various scenarios. Our command frequency analysis can
be used in real-time to identify outliers, e.g., for masquerade
detection. Behavioral patterns can be used to predict Unix
user’s behavior which helps improve Unix users’ experience,
from replacing long sequences of commands with scripts to
reduce the potential for errors to scaling computing capacity
and scheduling support staff. Being able to quantify expertise
can be useful in comparing users or assessing how users learn.
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