
Designing an Adaptive User Interface
According to Software Product Line Engineering

Yoann Gabillon and Nicolas Biri and Benoı̂t Otjacques

Luxembourg Institute of Science and Technology (LIST)
5, avenue des Hauts-Fourneaux

L-4362 Esch/Alzette
Email: {yoann.gabillon, nicolas.biri, benoit.otjacques}@list.lu

Abstract—An adaptive User Interface (UI) is a UI that is able
to adapt itself to a change of the context of use (user, platform,
environment). Designing an adaptive UI remains a difficult and
time consuming task that needs the use of common and variability
parts between the different UI adaptations. Software Product
Line (SPL) engineering is a software engineering approach that
aims to develop a collection of similar software systems by using
software assets and a variability model: the Feature Model.
Dynamic Software Product Line is an adaptation of the SPL
approach in order to design an adaptive software system. This
paper proposes a method to design an adaptive UI according
to a DSPL process. This method is implemented through the
UI ADAPTOR prototype. This first implementation underlies the
several benefits of the proposed method.

Keywords–Adaptive User Interface; Software Product Line;
Dynamic Software Product Line; Feature Model; Context of use.

I. INTRODUCTION

With the increasing amount of devices and mobile plat-
forms as well as new user profiles, designers need to design
a software system adapted to the current context of use.
A software system encompasses functional core and User
Interface (UI) parts. An adaptive User Interface (adUI) is a UI
that is able to adapt itself or to be adapted, automatically at run
time, to a context change. A context of use varies according
to the properties regarding the users, the platforms and the
environment of interaction. Because there are a huge amount
of possible combinations, designing an adUI is a difficult and
time consuming task.

Model-based approaches for the UI development (MBUID)
are mainly used in adUI development in order to decrease the
development costs. MBUID approaches promote the modelling
of adaptation rules to make the adUI evolve according to a
change of context [1] [2]. The designer must understand and
identify the adaptation rules (variations) and its effects [3],
i.e., the adaptation rules must be transparent (understandable
and reusable) for developers. However, the huge amount of
possible combinations make it difficult to understand and lead
to a lack of reusability and design errors.

Software Product Line Engineering (SPLE) aims to develop
a collection of similar software systems from a shared set
of software assets. This approach is used to design a set of
software systems that encompass common and variability parts
by using a model of variability. Indeed, the variability model

helps the designer to understand variations and reuse concepts
and tools to check consistency of variations.

In order to decrease the development cost of MBUID
approaches and to increase the understandability/reusability
of adaptation rules, this paper provides a method to design
an adUI according to SPLE. This method allows to reuse
concepts and tools proposed by SPLE approach to manage
and understand variabilities and its effect.

The paper begins with a background presentation of SPLE
including the whole process and feature model. Based on re-
lated work on adUI design and on UI design by SPLE (Section
3), the paper proposes a method to design adUI according
to SPLE in Section 4. In Section 5, the proposed method is
implemented through a prototype called UI ADAPTOR. Based
on UI components, this prototype composes a UI adapted
to the current context of use. UI ADAPTOR aims to collect
experimental lessons and to underlying the many benefits of
the proposed method.

II. BACKGROUND

The software product line (SPL) development method sep-
arates the two following processes: the domain engineering
and the application engineering [4]. Firstly, domain engi-
neering is the process which is responsible for establishing
the reusable artefacts and thus for defining the commonality
and the variability of the product line. All types of software
artefacts needed to develop the final products may be devel-
oped: requirements, design, realisation, tests, etc. Secondly,
application engineering is the process which is responsible
for deriving product line applications (products) from the
artefacts established in domain engineering. A large part of
application engineering consists of reusing artefacts of the
domain engineering and binding the variability as required for
the different applications.

The Dynamic SPL (DSPL) development method [4] is an
adaptation of the SPL method in order to produce only one
adaptive product, instead of a set of products. The DSPL
process also separates the requirement engineering that is made
at the design time and the domain engineering that is made
automatically this time at runtime (i.e., dynamically) according
to the current context of use.

Mostly, Feature Models (FM) are widely used to model the
variability of requirements during the whole SPL and DSPL
process. The Feature Model was first proposed by Kang and

86Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

al. as a part of Feature Oriented Domain Analysis (FODA)
study [5]. Since then, feature models have been very popular in
software product lines and have been widely accepted and used
by the academic and industrial communities, although several
dialects exists [6]. A FM is a tree that defines relationships be-
tween the features. The four following relationships specify the
hierarchical decomposition of a feature into its sub-features:
Mandatory, Optional, Alternative and Or. Mandatory means
that the feature is included in every product that includes
its parent. Optional means that the feature may or may not
be included in a product that includes its parent. Alternative
means that every product that includes the parent must include
exactly one feature from the group. Or means that every
product that includes the parent must include a non-empty
subset of the group. Constraints are used to specify cross-
tree relationships between features. A constraint consists of
a boolean expression. For example, “A ⇒ B” means that if B
is selected during the configuration phase, A must be selected
as well.

III. RELATED WORK

This section presents a related work overview of ap-
proaches in adaptive UI development and in UI development
according to SPLE.

A. Adaptive User Interface
According to [7], different software development ap-

proaches have already been investigated to design an adUI.
For example, MBUID [1] [2] [8] promotes the modelling
of transformation, Aspect-oriented programming [9] pushes
forward insertion of aspects at runtime or Component-based
programming [10] focuses on the (re)composition of avail-
able components. These approaches are based on the same
principle: an adaptive system is in charge of adapting a UI
by adaptation rules according to the current context of use.
As reference example, the SERENOA project [3] [2] [11]
identifies the main models needed to design an adUI: the UI,
the rules of adaptation, the context of use and the adaptor.
The adaptor is in charge of applying rules on the UI model
according to the context of use to produce a new UI model
expressing the adapted UI. The UI model is defined according
to the four standard levels of abstraction in MBUID: Task
Model, Abstract User Interface, Concrete User Interface and
Final User Interface [12].

However, according to [3], a main issue is the lack of
inspectability and understandability of adaptation rules that
leads to possible side effects and lack of reusability.

B. User Interface development by Software Product Line
Even if the design of adaptive systems by SPLE has already

been investigated [13] [14], this work focuses on the adaptation
of the functional core part. In contrast, the literature concerning
UI design according to SPL engineering focuses on the design
of a set of UIs. [15]–[17] propose to model variants of UI
features such as different whole UIs. As a consequence, UI
variations cannot be reused because they are not traceable or
saveable. [18] propose to model variations of interactors. Each
interactor that varies is a variant. For example, a interaction
variation can have two alternative variants: JComboBox or
JList. This modelling has the advantage to be easily inspectable
and traceable. [19] [20] argue in favour of the use of the

standard levels of abstraction to model variability into the
feature model. However, the selection of UI variations is
based on functional features. Unfortunately, UI variations are
necessary to improve usability even if functional features do
not change [21]. In contrast, [22] propose a methodology to
design a set of UIs from the selection of UI variants based on
a feature model containing the four abstraction levels.

IV. METHOD TO DESIGN ADAPTIVE UI BY DSPL
An overview of the SPLE-based Adaptive UI design

method is sketched in Figure 1. We have adapted the DSPL
process to design an adaptive UI. The main idea is to prepare
UI components and to model their variations according to the
targeted context of use during the domain engineering at design
time. Then, at runtime, the UI adaptor selects and composes
UI components according to the current context of use.

Firstly, at design time during the requirement engineering,
context variations and UI variations must be modelled as
features of the FM. The context features represent context
variations such as recommended by [23]. The UI features
represent variations between UI adaptations such as recom-
mended by [22]. For example, the screen size variation can be
expressed as two features: smallScreen and largeScreen. The
UI variations can be defined at different abstraction levels. For
example, two interactors can be expressed as two features:
slider and textfield. In order to express the link between the
context features and the UI features, we can add constraints.
For example, the slider that is replaced by the textfield for
space reasons can be expressed as two constraints: “slider ⇒
largeScreen” and “textfield ⇒ smallScreen”.

Secondly, the UI components must be designed correspond-
ing to each feature.

Thirdly, at run time during the application engineering, the
appropriate context feature and UI features must be selected
according to the current context of use. This selection must
be made automatically to promote a context-aware adaptation
of the composed UI. Many tools have been developed (such
as Feature IDE [24]) in order to automatically selects the UI
features according to the constraints and the selected context
features.

Finally, the components corresponding to the selected
features are composed to automatically design the adUI.

In order to promote context-aware adaptation of the com-
posed UI, an adaptive system in charge of recomposing the
adUI. From a context change detection, the UI adaptor updates
the context of use model and, in consequence, selects the
context feature. The context feature selection leads to a new
UI feature selection and a new UI composition to produce the
new adUI.

V. APPLYING THE METHOD: IMPLEMENTATION

Example application. Lets suppose a user, Orson, who
want to visualize the consumption data of his house. To achieve
his goal, he uses an adaptive visualization software called
“VisuData” (the Figure 2 shows a possible UI of this software).
VisuData provides four graphics in order to visualise a set
a data: a horizontal barchart, a vertical barchart, a pie chart
and a bubble chart. The VisuData’s user could use three data
filters. The first, called “DataDisplayed”, allows to choose the
data displayed. For example, Orson could select the quantity

87Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

Figure 1. Overview of the Dynamic SPL process to design an adaptive UI.

of electric energy or the price consumed by the radiators.
The second, “TimeLine”, allows to select the time interval
of the data displayed. For example, Orson could display the
consumption between 2010 and 2012. The last filter (“Filter
1D”) allows to select the value interval of the data. For
example, Orson could choose to display the radiators that
consume between 0 and 2000 dollars.

As requirements, the aim is to design this software adapted
to three different contexts (for convenience, the design of the
three adaptations according to three platforms are presented
but the benefit of the approach increse as well as the number
of adaptations):

1) if the user has a personal computer with a large
screen, the graphic and the filters are displayed in
a same frame (see Figure 2). The graphics selection
is made by icons (see the“SelectGraphic Icon” red
square in Figure 2). The selected data are displayed
as a list widget (see the “DataDisplayed Radio”
square in the Figure 2). The two other filters (see
“TimeLine Slider” and “Filter1D Slider” red
squares in Figure 2) use a slider to select intervals.

2) if the user has a smartphone with a small screen
(see Figure 3), the graphics and the filters are
displayed in two tabs. Because they use less
space, the icons and the list are replaced by a
combo box (see “SelectGraphic ComboBox”
and “DataDisplayed ComboBox” in
Figure 3), the Sliders are replaced by two
textfields (see “TimeLine 2TextF ield” and
“Filter1D 2TextF ield” in Figure 3).

3) if the user has a personal computer with a large
screen and a smartphone with a small screen, the
graphic is displayed on the PC (such as in the Figure
2 without the three filters) and the three filters are
displayed on the smartphone (such as the second
screen in the Figure 3 without the tab menu).

Prototype implementation. The prototype UI ADAPTOR
is implemented in JAVA and JAVAFX. The two platforms are
simulated according to their screen size (1280x1024 for the
large screen and 640x960 for the small screen).

Feature model. These requirements are modelled by the

feature model of Figure 4 according to the methodology
proposed by [22]. The UI variations depend on the task. For
example, the “filter1D” feature expresses the choice for the
designer to use a slider or two textfields to design the filter 1D
component. Each constraint informs the designer how the UI
feature can be selected. For example, the “Filter1D Slider”
feature is selected if there is large screen and no other platform
available. Consequently, this feature is selected when Orson
has a personal computer (case 1 of the requirements). The
context of use variations depend on the screen size and the
number of platforms. For example, a screen size can be large
or small. The “LargeScreen2” feature is in red because it can
be selected. Indeed, when Orson has a second platform, it is
a smartphone such as specified by the requirements.

Components. The components are implemented in JAVA
FX. The component model is not the focus of this paper,
the component model is defined as in [10]. Each component
corresponds to a concrete features of the feature model (Figure
4) and is represented by a red square in the Figures 2 and 3.
The UI of these components are underlined in a red square in
the Figures 2 and 3. A last component is developed correspond-
ing to the “V isuData2 Frame” feature. This component
encompasses two frames in charge of displaying the graphic
on the large screen and the three filters on the small screen.

Context-aware adaptation life-cycle. UI ADAPTOR sup-
ports the context-aware adaptation life-cycle. Firstly, the con-
text of use perception is simulated by the designer, i.e., the
context features are selected manually. Secondly, from the
selected context features, Feature IDE deduces (thanks to
a SAT solver [24]) the selected UI features automatically.
Thirdly, from the list of selected features, the UI ADAPTOR
composes the appropriate component in order to produce a
composed UI displayed according to the corresponding size
of the screen.

VI. CONCLUSION AND LESSONS LEARNED

This paper has proposed a method to design adaptive
User Interfaces according to SPL engineering. The experience
allows to learn lessons and benefits concerning the proposed
methods.

88Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

Figure 2. The composed User Interface adapted to a large screen. The red squares and the red labels are added to identify the UI components.

Figure 3. The composed User Interface adapted to a small screen. The red squares and the red labels are added to identify the UI components.

89Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

Figure 4. Feature Model of VisuData

Feature model. Because the feature model has a visual
representation compared to adaptation rules, it increases trans-
parency and understandability of the adaptation rules used by
producing a formal and visual model of variability. Because
the FM is formal, the FM also increase reusability between
different adUIs and different designers. It is also particularly
important to maintain and reuse adUI in order to design new
adaptations to add new contexts. The constraints on the feature
model increase the validity of the adaptation. For example, the
dead features (LargeScreen2) and the inconsistent constraints
are detected by Feature IDE. Moreover, the context of use can
be easily modelled because there are other FM editors (such
as CVL [25]) that handle the cardinality of the features. In
consequence, these editors allow to model only one platform
features without listing the number of platforms used.

Components. The use of components increase reusabil-
ity and enhancement of quality because the UI components
are reviewed and tested in many adaptive/composed UIs.
Component-based programming can also be combined or
replaced by other programming paradigms. For example, a
component can be seen as a set of elements of the standard
abstraction levels [12]. Moreover, when a UI component is
maintained, the change can be propagated to all adUI with
which the component is being used.

Process. The flexibility of the method allows to reuse pre-
existing development approaches to design adUI. For example,
the adaptation rules can be defined as aspects or models. The
features can model the variability of a component, a task,
an interactor but also the adaptation rules. In addition, the
proposed method allows to improve the cost estimation of the
adUI to design based on previous experience [4].

We plan to increase the number and type of artefacts by
adding tests to design more complex adUI. We plan to design
a complete framework to design AdUi, i.e., including con-
text detection and multi programming languages (HTML and

JAVA) in order to evaluate the designer effort and adaptation
performance.

REFERENCES

[1] J.-S. Sottet et al., “Model-driven adaptation for plastic user interfaces,”
in Human-Computer Interaction–INTERACT 2007. Springer, 2007,
pp. 397–410.

[2] V. G. Motti and J. Vanderdonckt, “A computational framework for
context-aware adaptation of user interfaces,” in RCIS, R. Wieringa,
S. Nurcan, C. Rolland, and J.-L. Cavarero, Eds. IEEE, 2013, pp.
1–12.

[3] G. Meixner, F. Patern, and J. Vanderdonckt, “Past, present, and future of
model-based user interface development.” i-com, vol. 10, no. 3, 2011,
pp. 2–11.

[4] K. Pohl, G. Bockle, and F. Van Der Linden, Software product line
engineering. Springer, 2005, vol. 10.

[5] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” DTIC Document,
Tech. Rep., 1990.

[6] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Computer Networks, vol. 51, no. 2,
2007, pp. 456–479.

[7] I. Jaouadi, R. Ben Djemaa, and H. Ben Abdallah, “Interactive systems
adaptation approaches: A survey,” in ACHI 2014, The Seventh Interna-
tional Conference on Advances in Computer-Human Interactions, 2014,
pp. 127–131.

[8] F. Paterno, C. Santoro, and L. D. Spano, “MARIA: a universal,
declarative, multiple abstraction-level language for service-oriented
applications in ubiquitous environments,” vol. 16, no. 4, pp. 1–30.

[9] A. Blouin, B. Morin, O. Beaudoux, G. Nain, P. Albers, and J.-M. Jzquel,
“Combining aspect-oriented modeling with property-based reasoning to
improve user interface adaptation,” in Proceedings of the 3rd ACM
SIGCHI symposium on Engineering interactive computing systems.
ACM, 2011, pp. 85–94.

[10] Y. Gabillon, M. Petit, G. Calvary, and H. Fiorino, “Automated planning
for user interface composition,” in Proceedings of the 2nd International
Workshop on Semantic Models for Adaptive Interactive Systems: SE-
MAIS’11 at IUI 2011 conference. Springer HCI, 2011, pp. 1–5.

[11] V. G. Motti, D. Raggett, and J. Vanderdonckt, “Current practices on
model-based context-aware adaptation,” in CASFE, 2013, pp. 17–23.

90Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

[12] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and
J. Vanderdonckt, “A unifying reference framework for multi-target user
interfaces,” Interacting with Computers, vol. 15, no. 3, 2003, pp. 289–
308.

[13] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic
software product lines,” Computer, vol. 41, no. 4, 2008, pp. 93–95.

[14] C. Parra, X. Blanc, and L. Duchien, “Context awareness for dynamic
service-oriented product lines,” in Proceedings of the 13th International
Software Product Line Conference. Carnegie Mellon University, 2009,
pp. 131–140.

[15] P. Trinidad, A. Ruiz-Cortés, J. Pena, and D. Benavides, “Mapping
feature models onto component models to build dynamic software
product lines,” in International Workshop on Dynamic Software Product
Line, DSPL, 2007, pp. 51–56.

[16] K. Geihs et al., “A comprehensive solution for application-level adap-
tation,” Software: Practice and Experience, vol. 39, no. 4, 2009, pp.
385–422.

[17] H. Arboleda, A. Romero, R. Casallas, and J. Royer, “Product derivation
in a model-driven software product line using decision models,” in
Proceedings of the Memorias de la XII Conferencia Iberoamericana
de Software Engineering, CIbSE, vol. 2009, 2009, p. 59.

[18] K. Garcés, C. Parra, H. Arboleda, A. Yie, and R. Casallas, “Variability
management in a model-driven software product line,” Revista Avances
en Sistemas e Informática, vol. 4, no. 2, 2007, pp. 3–12.

[19] A. Pleuss, G. Botterweck, and D. Dhungana, “Integrating automated
product derivation and individual user interface design,” Proceedings of
VaMoS, vol. 10, 2010, pp. 69–76.

[20] A. Pleuss, B. Hauptmann, D. Dhungana, and G. Botterweck, “User
interface engineering for software product lines: the dilemma between
automation and usability,” in Proceedings of the 4th ACM SIGCHI
symposium on Engineering interactive computing systems. ACM,
2012, pp. 25–34.

[21] Q. Boucher, G. Perrouin, and P. Heymans, “Deriving configuration
interfaces from feature models: A vision paper,” in Proceedings of
the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems. ACM, 2012, pp. 37–44.

[22] Y. Gabillon, N. Biri, and B. Otjacques, “Designing multi-context uis
by software product line approach,” in Proceedings of the International
Conference on Human-Computer Interaction (ICHCI’13). World
Academy of Science, Engineering and Technology (WASET), 2013,
pp. 628–637.

[23] A. S. Karataş, A. H. Doğru, H. Oğuztüzün, and M. Tolun, “Using
context information for staged configuration of feature models,” Journal
of Integrated Design and Process Science, vol. 15, no. 2, 2011, pp. 37–
51.

[24] C. Kastner et al., “Feature ide: A tool framework for feature-oriented
software development,” in Software Engineering, 2009. ICSE 2009.
IEEE 31st International Conference on. IEEE, 2009, pp. 611–614.

[25] K. Czarnecki, P. Grunbacher, R. Rabiser, K. Schmid, and A. Wka-
sowski, “Cool features and tough decisions: a comparison of variability
modeling approaches,” in Proceedings of the sixth international work-
shop on variability modeling of software-intensive systems. ACM,
2012, pp. 173–182.

91Copyright (c) IARIA, 2015. ISBN: 978-1-61208-382-7

ACHI 2015 : The Eighth International Conference on Advances in Computer-Human Interactions

