
Touchscreen Interfaces for Visual Languages

Michael Hackett and Philip T. Cox
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia, Canada

e-mail: mhackett@cs.dal.ca, pcox@cs.dal.ca

Abstract—Through the construction of a simple mock visual
programming language (VPL) editor, this study compares two
different styles of touchscreen interface and demonstrates the
natural fit between touch input and visual programming. The
touchscreen removes a layer of indirection introduced by the
mouse and allows for a more direct relationship—literally
“hands on”—with the objects on the screen. The addition of
“multi-touch” also opens up intriguing possibilities for two-
handed, immersive interfaces, with the potential for greater
efficiencies than possible with the mouse’s single point of
interaction.

Keywords-Touchscreens; visual programming; bimanual; user
interfaces; kinaesthetic feedback

I. INTRODUCTION

An often cited advantage of visual programming envi-
ronments is the greater sense of direct manipulation that
these environments provide, through the immediate feedback
received while working with some graphical representation
of the code. However, when the manipulation is performed
with a mouse or a trackpad, as is typical in existing systems,
an unnatural barrier is placed between the user and the soft-
ware environment. Additionally, having to frequently switch
hand positions and “operating modes” between mouse and
keyboard slows users down and breaks their sense of flow,
cutting into their productivity.

Recently, large touchscreen devices have become inexpen-
sive and readily available, while new user interface designs
are being developed that are tailored to touch input. Through
these devices, users can interact more directly with their
data, manipulating visual representations with the touch of
a finger. And while the lack of a physical keyboard would
seem to make these devices poorly suited for traditional text-
based programming, the more direct control of on-screen
objects that the touchscreen affords might just make them
ideal for visual programming languages (VPLs).

This paper describes the design and implementation of a
simple VPL code editor—codenamed “Flow”—for a touch-
screen tablet device (an Apple iPad). The prototype was built
in order to experiment with various user-interface options
and to compare the usability and efficiency of the interfaces.
The initial version has two different styles of interface,
one based on the familiar drag-and-drop paradigm and the
second using a novel bimanual (two-handed) approach. To

minimize the influence of language syntax on overall usabil-
ity, the VPL is closely modeled on Prograph [1], an existing
well known dataflow programming language. At this stage,
the prototype is only a facade of a true visual programming
environment—editing is very limited and execution is not
yet supported.

II. BACKGROUND AND RELATED WORK

Although there is little prior work to draw upon with
respect to visual programming on a touchscreen, the design
of the Flow prototype was informed by more general touch-
input and user-interface research. Of particular interest and
inspiration was research into bimanual interfaces, kinaes-
thetic feedback, and touchscreen gesture design.

A. Two-Handed Input

Bimanual interfaces take advantage of the use of both
of the user’s hands together, usually in an asymmetric
fashion. Yee [2] and Wu et al. [3] suggest using the non-
dominant (NP) hand to establish and maintain modes while
the dominant (P) hand does work within that context (as
suggested in Guiard’s Kinematic Chain model of bimanual
action [4]).

This type of arrangement seems particularly well suited
to today’s “multi-touch” displays (which can distinguish
multiple simultaneous touches), and the larger screens make
it feasible to create a touch interface that supports the use
of two hands at once. Hence, it was decided early on to
experiment with at least one interface of this style.

B. Kinaesthetic Feedback

Sellen et al. [5] provide details on two experiments
that compared kinaesthetic feedback (using a foot pedal)
with visual feedback, and user-maintained feedback with
system-maintained. They found that actively user-maintained
kinaesthetic feedback significantly reduces mode errors (that
is, instances in which a user performs an action appropriate
for a mode that the application is not currently in), and
allows for faster resumption of activity after an interruption.
Wu et al. [3] use the term “kinaesthetically held modes” to
describe this interface technique, while Raskin suggests the
more succinct “quasimodes” [6, p. 55].

176Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

In contrast, “latching” modes, where a mode stays in
effect until cancelled or changed, tend to lead to more mode
errors [5][6], and users often struggle to figure out how to
cancel the mode selection if they change their minds or
realize they have made an error.

C. Touchscreen Gesture Design

Nielsen et al. [7] have defined a number of principles
and guidelines for designing gestures with usability and
ergonomics in mind. They also presented a procedure for
building a “gesture vocabulary” (the set of gestures in an
interface) through user studies, then refining and testing
the resulting gesture set. They stress the importance of
keeping ergonomics in mind and warn against basing gesture
design on the recognition capabilities of the hardware, as
this may result in gestures that are illogical and “stressing
or impossible to perform [for] some people”.

Mauney et al. [8] performed a user study with partic-
ipants from eight different countries and found that there
was strong agreement across cultures for gestures with a
physical or metaphorical correspondence to the objects being
manipulated (“direct manipulation gestures”), but fairly low
agreement on gestures that were symbolic in nature. This
suggests that symbolic gestures should be avoided (a point
also made by Frisch et al. [9]), except perhaps as expert-level
shortcuts.

III. DESIGN PRINCIPLES

While far from an exhaustive list, this section describes
three key principles that guided the design of the prototype.

Discoverability: Norman and Nielsen [10] have criticized
today’s commercial touch tablet interfaces, citing numerous
examples of gestures that are not easily discoverable or
guessable, and are often learned only by reading about them
elsewhere. To support discoverability in Flow, a toolbar
displays buttons for all available commands, obviating the
need for a series of hidden (and often arbitrary) gestures
that need to be learned. On the other hand, moving graphical
objects by dragging them with a finger is intuitive and easily
discoverable; it is not necessary to create a special button
for this action.

Minimizing Mode Errors: Flow uses kinaesthetic feed-
back, in the form of screen contact, to regulate modes. A
mode becomes active when a toolbar button is touched or a
gesture is recognized, and remains active only as long as the
user maintains that particular contact with the screen. Modes
are disengaged automatically when all fingers are lifted from
the screen, providing an easy and reliable way to return to
the default application state.

Responsiveness: Although this is only an early prototype,
it was believed that the interface would need to be smooth
and responsive in order for any user feedback to be mean-
ingful. To give the user a real sense of direct manipulation,

objects would have to react without any hesitation or slug-
gishness. (That this intuition was correct was borne out in
the comments from users who were all very impressed and
pleased with the responsiveness of the application.)

IV. PROTOTYPE APPLICATION

For the initial prototype of Flow, two versions were
created, each employing a different user interaction style.
The visual layout for both is essentially the same, featuring
a toolbar along one side of the display and a large area for
displaying the code being edited. (See Figures 1–3.) The
toolbar contains buttons for creating each of the language
elements (initially just three types of operations; input and
output nodes; and datalinks for connecting nodes) as well as
various commands (only Delete at the moment). The toolbar
can be placed along either the left or right edge of the screen
(for right- or left-handed users, respectively), as selected
through a user preference.

In one version, the toolbar buttons control the current
operating mode of the editor—adding an operation, a node,
or a datalink, or deleting any of the above. A button must
be “held down” (the touch must be maintained on the
button) to engage the corresponding mode, thereby providing
continuous, user-maintained kinetic feedback. (Figure 1.)
While the mode is active, a second touch performs some
manipulation within the context of the mode, such as tapping
or dragging in the main editor pane. Although this can all
be done (somewhat awkwardly) with one hand, the intent is
for this interface to be used with two hands, the NP hand
selecting the mode and the P performing the manipulation.
This will be referred to as the “quasimodal” version, using
Raskin’s term.

In the second version, all of the buttons for creating new
objects are operated by dragging a finger from the button
onto the code pane, which creates an object for the user to
drag into place. (Figure 2.) The delete command is, for the
moment, still operated using the two-handed method, but
that could be replaced or supplemented with a gesture (such
as making a stroke through an object, or dragging it to a
trash area along another edge of the screen). This interface,
despite the mixing of styles, will be referred to as the “drag-
and-drop” version.

The drag-and-drop style should be familiar to most users
from desktop GUIs, but the quasimodal interface may re-
quire a bit of explanation. It would initially be unfamiliar to
most, but it was hoped that, once its operation is explained,
it would be easy to understand and offer a viable alternative
to more customary designs.

In both versions, the editor operates in a default mode
when no buttons are pressed. In this mode, objects can
be moved simply by dragging them (Figure 3). In the
quasimodal version, objects cannot be moved while any of
the buttons are engaged, as that action might be confused
with a gesture related to the active quasimode. Take, for

177Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

Figure 1. Quasimodal operation: Creating a new instance operation
involves actively maintaining a touch on the Instance operation button (top-
left photo) and tapping with another finger to place the operation icon in the
code pane (top-right). To create a new datalink between nodes, the Datalink
button is held (bottom-left) while another finger draws a line from the start
node to the end node (bottom-right).

Figure 2. Drag-and-drop operation: New operations are dragged from the
toolbar onto the editor pane and placed wherever desired. (Sequence shown
left-to-right.)

example, creating a datalink between two nodes, which
involves dragging one’s finger across the screen from one
node to the other (while the Datalink quasimode is engaged).
Nodes are attached to the top and bottom edges of operation
icons, so the point of contact would be on or near the
edge of the node’s operation icon. It would be hard to
reliably distinguish this action from an attempt to move the
operation, if it were not for the active quasimode providing
context. Because a finger touch is not nearly as precise as
a mouse or stylus, and some of the targets are necessarily
small, the software must be forgiving and allow a good deal
of leeway in hitting targets. By limiting the set of potential
targets within a mode or quasimode, recognition accuracy
can be much higher, which makes the interface seem more
intelligent.

In the drag-and-drop interface, creating new code objects
by dragging them from the toolbar invokes a kind of

Figure 3. Moving objects: In the default editing mode (and at any time
in the drag-and-drop interface), operation icons can be moved simply by
dragging them.

quasimode as well, in as much as the creation mode is active
only as long as the user maintains screen contact with the
finger that started the drag gesture. However, unlike in the
full quasimode interface, where engaging a toolbar button
locks the entire interface into the corresponding quasimode,
here the quasimode applies only to that one finger. Other
fingers can continue to move existing objects in the editor, or
begin additional creation actions. This feature is not actually
inherent in the design; it was more an accident of some
implementation choices, but it seems in the spirit of an
immersive multi-touch interface to allow this to remain.

The target hardware for the prototype is a first-generation
Apple iPad. The iPad has a 9.75′′ (247 mm diagonal) screen
with a capacitive touchscreen overlay, which can simultane-
ously detect independent touches from all ten fingers. The
software was developed as a “native app”, using Objective-
C and Apple’s iOS SDK [11]. Videos demonstrating the
prototype are available at [12].

V. USER EVALUATION

A small sampling of users known to the authors were
given the software to try, and were interviewed during and
after using it. Some were expert Prograph users and so
fully understood the model of the visual editor and the
symbols used, while some others were non-programmers
or novice Prograph users who, nonetheless, were able to
give feedback on the responsiveness and naturalness of the
interface options.

Overall, there was a strong consensus that the design was
intuitive and very responsive. All but one user (and all of
the expert users) felt that the sense of direct manipulation
was greater than with a mouse, and that the responsiveness
of the interface to touches was an important part of that.

The expert users all initially assumed that drag-and-drop
would be the way to operate the toolbar buttons, while some
novice users first tried to tap on the buttons to latch them on.
They generally attributed this expectation to their previous
computer experience. After an explanation was given (often
as little as suggesting that one try using two hands), all
but one quickly mastered the quasimodal operation, and
the majority said that they preferred this version to using

178Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

drag-and-drop. Most found it faster to create new objects
with the two-handed interface than by dragging items from
the toolbar. And the expert users found adding nodes by
dragging them from the toolbar to be somewhat awkward,
perhaps because there was no analogue to this in the desktop
version. No one had a problem adding nodes by tapping
using the quasimodal version.

Two users expressed a preference for the drag-and-drop
interface, primarily because they preferred to use just one
hand. This seemed to be largely because the form factor of
the tablet invites one to sit back and hold it in one hand,
rather than placing it on a table so that both hands are free.
One user suggested moving the toolbar buttons up towards
the top edge of the screen so that the unit could be gripped
up higher (better balancing the tablet in the hand) while still
leaving the thumb free to press buttons. It was also suggested
that a landscape orientation for the editor (it is currently
portrait orientation only) would accommodate holding the
tablet with both hands while operating the interface with
one’s thumbs.

VI. CONCLUSION AND FUTURE WORK

The feedback obtained so far indicates that users find
the environment appealing to use and that the sense of
direct manipulation, a key feature of visual programming,
is enhanced by the touchscreen interface. Having multiple,
simultaneous touch points instead of single cursor opens
up many possibilities for immersive and more efficient
programming interfaces. While it is a bit early to begin
judging coding efficiency, the experienced Prograph users
were very excited and are looking forward to putting that
question to the test with a future, more fully realized version.

However, it appears that users do need at least a small
amount of instruction to figure out how to operate the
quasimodal interface, given its unfamiliarity. Because mobile
applications rarely come with any external documentation,
some sort of in-program assistance should be added. Pro-
gressive enhancement techniques could also be used to
gradually introduce novel interface features. Mobile games
may offer a useful model to follow, as it is common for
games to have specialized rules and control systems that
must be learned before or during play. Testing so far does
suggest, however, that once users learn the “trick”, many do
prefer the quasimodal interface, so the small amount of effort
put into learning the unfamiliar system seems worthwhile.

Obviously, much more rigorous user testing is required,
and we intend to conduct such testing as the prototype
matures. Future work will largely be focused on experi-
menting with designs for navigating higher-level language
constructs, such as methods, classes, and libraries. There are
a number of general approaches to consider, such as zoom-
ing, overview+detail, focus+context (all described in [13]),
and/or a more traditional hierarchical system. And within
those approaches, there are several ways to map them to a

small screen and to take advantage of touch input. Again,
particular attention will be paid to the option of bimanual
input, with the hope that this can spur further investigation
into the effectiveness of this mode of interaction.

ACKNOWLEDGMENT

The authors would like to thank the members of the
Dalhousie University Visual Languages and Design Group
for their valuable input during the development of the Flow
prototype, and their former Pictorius colleagues who took
the time to provide expert-user feedback on the prototype.

REFERENCES

[1] P. T. Cox, F. R. Giles, and T. Pietrzykowski, “Prograph: a step
towards liberating programming from textual conditioning,”
in Proc. 1989 IEEE Workshop on Visual Languages, 1989,
pp. 150–156.

[2] K. Yee, “Two-handed interaction on a tablet display,” in
CHI ’04 extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM, 2004, pp. 1493–1496.

[3] M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan,
“Gesture registration, relaxation, and reuse for multi-point
direct-touch surfaces,” in Proc. 1st IEEE Int. Workshop on
Horizontal Interactive Human-Computer Systems (TableTop
2006), 2006, pp. 185–192.

[4] Y. Guiard, “Asymmetric division of labor in human skilled
bimanual action: The kinematic chain as a model,” Journal
of Motor Behavior, vol. 19, pp. 486–517, 1987.

[5] A. J. Sellen, G. P. Kurtenbach, and W. A. S. Buxton, “The pre-
vention of mode errors through sensory feedback,” Human-
Computer Interaction, vol. 7, pp. 141–164, Jun. 1992.

[6] J. Raskin, The Humane Interface: New directions for de-
signing interactive systems. Reading, MA, USA: Addison-
Wesley, 2000.

[7] M. Nielsen, M. Störring, T. B. Moeslund, and E. Granum,
“A procedure for developing intuitive and ergonomic gesture
interfaces for HCI,” in Gesture-Based Communication in
Human-Computer Interaction, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2004, vol. 2915, pp.
105–106.

[8] D. Mauney, J. Howarth, A. Wirtanen, and M. Capra, “Cul-
tural similarities and differences in user-defined gestures for
touchscreen user interfaces,” in Proc. 28th Int. Conf. Human
Factors in Computing Systems (extended abstracts) (CHI EA
’10). New York, NY, USA: ACM, 2010, pp. 4015–4020.

[9] M. Frisch, J. Heydekorn, and R. Dachselt, “Diagram editing
on interactive displays using multi-touch and pen gestures,”
in Diagrammatic Representation and Inference, ser. Lec-
ture Notes in Computer Science, A. Goel, M. Jamnik, and
N. Narayanan, Eds. Springer Berlin / Heidelberg, 2010, vol.
6170, pp. 182–196.

[10] D. A. Norman and J. Nielsen, “Gestural interfaces: a step
backward in usability,” interactions, vol. 17, pp. 46–49, Sep.
2010.

[11] Apple Computer. (2011) iOS Reference Library. [Online].
Available: http://developer.apple.com/library/ios/navigation/

[12] M. Hackett, “Multitouch dataflow editing (video),” 2011. [On-
line]. Available: http://web.cs.dal.ca/∼pcox/visual/Multitouch/

[13] A. Cockburn, A. Karlson, and B. B. Bederson, “A review
of overview+detail, zooming, and focus+context interfaces,”
ACM Computing Surveys (CSUR), vol. 41, p. 2:1–2:31, Jan.
2009.

179Copyright (c) IARIA, 2012. ISBN: 978-1-61208-177-9

ACHI 2012 : The Fifth International Conference on Advances in Computer-Human Interactions

http://developer.apple.com/library/ios/navigation/
http://web.cs.dal.ca/~pcox/visual/Multitouch/

	Introduction
	Background and Related Work
	Two-Handed Input
	Kinaesthetic Feedback
	Touchscreen Gesture Design

	Design Principles
	Prototype Application
	User Evaluation
	Conclusion and Future Work
	References

