
Road-based Adaptation of In-Car-Infotainment Systems

Sandro Rodriguez Garzon

Daimler Center for Automotive IT Innovations

Berlin, Germany

sandro.rodriguez.garzon@dcaiti.com

Kristof Schütt

Daimler Center for Automotive IT Innovations

Berlin, Germany

kschuett@cs.tu-berlin.de

Abstract—This paper introduces a prototype of a highly
adaptive in-car-infotainment system. The prototype processes
historical user interactions in order to discover regular se-
quences of interaction events within similar environments. The
discovered environments in form of road segments and the
activities will be used to adapt the human-machine interface
(HMI) in case the car approaches an environment that is likely
to contain a known activity. Temporal event patterns as well
as grouping criteria need to be prespecified to control the
detection of characteristical activities and to define the way
two road segments are declared to be similar. Furthermore, a
brief technical introduction of the automotive specific process
of location information preprocessing is given, which is used
by the prototype to interpret its environment or to group
road segments. The use cases of a button that changes its size
depending on the probability of being pressed at a certain road
as well as a HMI that automatically switches to a certain radio
station based on historical user initiated radio station changes
at similar road segments will be discussed in detail.

Keywords-context awareness, personalization, adaptation, in-
telligent user interface

I. INTRODUCTION

Over the last years more and more mobile devices such

as mobile phones or in-car-infotainment systems became

location-aware. In particular, the high distribution of smart

phones with GPS sensor spurred the use of location-based

services. Several applications like searching for point-of-

interests within a certain range or notifications about friends

in close-by environments became popular and underlined

the user demand for applications that provide location-based

content.

So far, the dynamic content is generated in case the

user approaches a certain environment and either prompts

the system to show the content or gets notified if some

predefined objects occur in the current environment. In

both cases the user needs to manually define the kind of

information that might be helpful in the current situation.

In the former variant the user has to select a topic while

in the latter variant the user has to prespecify a notion of

interestingness for certain information. Both approaches use

static user interests and location information for processing.

But how to deal with users that have different interests

depending on the location?

In order to present content based on interests that are

influenced by the location the user would need to provide

all individual associations between interests and locations

beforehand. The expense for the user remains arguable as

long as all interests are associable with user defined abstract

locations like home or office. But it is getting difficult

and impractical if the interests are connected to concrete

locations characterized by latitude and longitude values. An

interim solution would be to discover abstract locations of

each user by investigating his moving behavior as showed

in [1]. The abstract locations might be proposed to the user

to facilitate the input of the mentioned interest and location

relations.

A more pleasant approach is to discover abstract locations

and the corresponding interests based on historical data of

service use without the need to prompt the user to enter the

interest-location relations. Such an approach would enhance

several applications like restaurant search or GUI extensions

like the generation of favorite button lists by considering the

users interests at a certain location. An application for the

restaurant search as a smart content filtering service can be

realized by incorporating additional location parameter to

the recommender system [2]. Complex personalization use

cases like individualized favorite buttons that execute certain

sequences of preferred user interactions to reduce click costs

need a more sophisticated notion of interest.

This paper introduces an in-car-infotainment system pro-

totype capable of personalizing itself based on regular user

tasks at certain locations. The introduction is followed by a

short survey of papers related to the fields of context-aware

computing and location-based personalization. In the Section

”Examples” two personalization examples are introduced

that are used throughout this paper. A detailed description

of all high-level components and their interactions with

each other is given in Section ”Architecture”. The Section

”Situation Recognizer” contains a step-by-step explanation

of the event sequence detection and grouping process. A

rather technical description of location preprocessing is

given in Section ”Map Matching”. This paper ends with a

summarizing conclusion and a discussion of refinements and

future extensions.

II. RELATED WORK

Over the last years a lot of research was done concerning

the detection of regular tasks and its visualization. In [3]

147

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

Shen uses graph mining algorithms to extract regular work

flows of desktop use as frequent subgraphs of a graph con-

sisting of resources and the information flows in between.

In [4] Brdiczka follows a different approach by considering

the time in between user interactions in addition to the type

of action as described by Shen. Neither of them deals with

an observation of the environment at the moment the task

was executed. An interesting approach of adapting a system

based on its use at certain locations is described in [5].

Coutand uses case-based reasoning to detect relations be-

tween system utilization and location to decide about future

mobile phone properties in certain situations. In this case

there is no need to extract complex sequences of interactions

to build sophisticated task representations because a mobile

phone property modification is solely related to the task of

approaching a location. Thus, a task is interpretable as the

action of entering a certain context.

Several context-aware frameworks [6], [7] were intro-

duced in order to extract abstract representions of the context

based on the aggregation of raw sensor data. Especially,

the discovery of significant locations out of multiple se-

quences of GPS data to predict future movements of users

or to enhance mobile phones became a popular field of

research [8], [1], [9]. A promising approach of Liao in [10]

deals with the task of mainly relating significant locations to

regular user interactions. Liao discovers significant locations

and infers corresponding activities using Relational Markov

Networks. The process of detecting abstract tasks like din-

ing is supported by location dependent information like a

close-by restaurant obtained from geographical databases.

In contrast, our approach does not need to infer high-

level abstractions of tasks because personalization relevant

activities are extracted by means of prespecified temporal

event patterns. Inspired by [11], we are solely interested in

actions originating from the use of an in-car-infotainment

system. In [11], Rogers presents the application of user-

centric personalizations within the automotive environment

that is based on the analysis of the user actions ”selecting

preferred routes” and ”spoken feedback”. In case of our

examples the user actions are ”pressing a certain button”

and ”changing the radio station”.

III. EXAMPLES

In the following sections, a simple and a rather complex

personalization use case within the automotive environment

will be discussed in detail. The simple use case deals with

a button list of the HMI that changes its visualization

based on its historical use. More precisely, the size of the

buttons will depend on the probability of being pressed in

a certain situation. Considering a situation to be defined as

the road the car is currently driving on, the buttons should

dynamically change their size according to their use at a

certain road. This use case is declared to be simple because

the actions that should be investigated namely the button

<route>

<waypoint>

<position>

<lat>48.422017</lat>

<lon>9.536767</lon>

</position>

<time>1275296924299</time>

<direction>189.8</direction>

<height>808.7</height>

<speed>15.3</speed>

</waypoint>

...

</route>

Listing 1. Section of a context log

click as well as the personalization triggering situation are

single points in time.

The more complex use case deals with a HMI that ana-

lyzes user initiated radio station changes in order to propose

automatic radio stations changes depending on discovered

regularities. A valid regularity would be discovered if the

HMI user switches to a certain radio station every time he

drives through a certain village. The proposal made by the

HMI should first be visualized to the HMI user and later

be executed if the user agreed to the automatic execution.

Therefore, the personalization is executed indirectly in con-

trast to the simple use case where the resizing of a button

is applied immediately. The complexity of the use case is

caused by the action that consists of several temporal order

events, which form a significant radio station change. In this

case a radio station change is declared as significant if no

other radio station change followed within 5 minutes.

IV. ARCHITECTURE

The in-car-infotainment prototype consists of three main

components: Context Simulator, HMI and Situation Recog-

nition. Additionally, context log files based on XML are used

in the Context Simulator to simulate environmental aspects

like the position or the direction of the car. These log files are

produced by recording location relevant information either

at a real world in-car-infotainment system or by a mobile

phone equipped with a GPS and compass sensor. Listing 1

shows a section of an example context log file.

A rapid prototyping approach is taken to implement

an exemplary human machine interface based on Action

Script. Within the client-server nomenclature the HMI is

called the client and the Context Simulator can be seen as

the server. Such an assignment became necessary because

Action Script does not allow to implement listening sockets.

During initialization the HMI tries to connect to the Context

Simulator and waits for incoming context data. The HMI

comprises many components like a navigation system and

a radio in order to provide a wide range of possibilities for

personalization use cases. Figure 1 shows a screenshot of

148

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

Figure 1. Screenshot of the HMI

HMI
Context
Simulator

Environments

Events

Situation
Recognizer

Expectations

Context Logs
(XML)

Figure 2. Overview architecture

the HMI in the navigation system modus.

In order to personalize the HMI based on its historical use

we need to log all user interactions and the corresponding

context. This is realized by sending all interaction data

and indirect user interactions like location change to a

separate component called Situation Recognizer. Since the

Situation Recognizer does not differentiate between a direct

or indirect interaction both events are summarized under the

term interaction event. As stated above, the HMI acts as a

client and connects to the Situation Recognizer at startup

time. An overview about the whole architecture is given in

Figure 2.

Each interaction event comprises of a header and a body

section. The header section contains event attributes that

are common to all events regardless of their type while the

body section contains type dependent attributes. Listing 2

shows an example event that needs to be fired by the HMI

to signalize a radio station change.

The nr attribute contains a successive number within

a certain session while the level attribute denotes the

abstraction layer of an event. So far, we identified 3 levels:

Raw events, logical events and instance events. Raw events

can represent a touch or a press of a button of the central

command unit(CCU) while logical events can signalize a

recognized gesture or a click (e.g. constructed of the raw

events touch down and touch up). The raw events will be

thrown globally at any time, whereas the instance events will

only be thrown if a unique instance of an HMI element is

affected. An example can be a click onto a certain button

of the global application line(e.g. Navi). In this case the

corresponding HMI element id is stored in the event attribute

sourceId.

The body contains event attributes that belong to a certain

type of instance event. Consider an interaction event that

originates from a certain button of an application line

signalizing a button click. In this case the button label might

be included in the body to permit the Situation Recognizer

to differentiate between clicks of different buttons that are

part of the same button list.

The Situation Recognizer processes all interaction events

and notifies the HMI about approaching a situation that

will likely be the environment for a known interaction

event sequence. In other words, the Situation Recognizer

discovers regular interaction sequences and informs the HMI

about future interaction event values and its environments.

Therefore, the notification must contain all relevant situation

information as well as future values of certain environmental

aspects and its probabilities. These information will be

used by the HMI to display a human-readable form of a

discovered frequent interaction sequence as well as to exe-

cute personalizations. The interpretation of the notification

message comprising use case dependent data is supported by

a description of the message format specified beforehand.

Considering the complex example introduced in Section

III the notification must contain the situation information

comprising of the road name and the future radio station.

Listing 3 shows the corresponding notification. The message

will be interpreted by the HMI in the following way: The

current road is called ”Main Street” and a user initiated

switch to the radio station with name ”KissFM” is likely

to appear now. The notion of the word ”likely” is discussed

in Section ”Situation Recognizer”. The notification of the

simple use case must contain the label of the button and the

corresponding probability of execution.

V. SITUATION RECOGNIZER

As stated above, the Situation Recognizer deals with the

task of processing user interactions to discover frequent

interaction sequences. These frequent user interaction se-

quences will be used to inform the HMI about the future

steps of the user. To analyze sequences of events and its

environments it is necessary to split the search process into

3 successive steps: Action Discovery, Action Grouping and

Situation Discovery. Thereby, each step is supported by a

use case description to keep control of the whole process

by e.g., reducing the search space or by defining a fading

function for an irrelevance factor for each user action. The

use case descriptions must be defined by an expert together

with the HMI developer.

149

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

<event nr="2156" level="I" type="StationChanged" sourceId="Radio" timestamp="1277112493971">

<StationChanged>

<frequency>http://www.kissfm.de</frequency>

<stationName>KissFM</stationName>

</StationChanged>

</event>

Listing 2. Example of an interaction event

<proposition uc="RadioChange">

<action>

<parameter>

<stationFrequency>

http://www.kissfm.de

</stationFrequency>

<stationName>

KissFM

</stationName>

</paramenter>

<environment>

<street>Main Street</street>

</environement>

</action>

</proposition>

Listing 3. Example of a situation notification

A. Action Discovery

The first step namely Action Discovery uses a temporal

event pattern of the use case description to extract a certain

event sequence out of the stream of interaction events.

For this purpose the complex event processing engine Es-

per [12] is selected, which analyzes event streams based

on pattern descriptions written in Esper’s event processing

language(EPL). The resulting concrete sequence of events is

called action.

In case of our complex use case, the temporal event

pattern to extract significant radio station changes looks as

follows:

StationChange → T imer(5min, not(StationChange))

The temporal event pattern of the simple use case is

omitted because it comprises only of the button click event.

The resulting actions contain either a concrete radio station

changed event or a concrete button click together with the

corresponding context in form of a road segment id.

B. Action Grouping

The Action Grouping subprocess collects all actions and

groups them by prespecified criteria. Each group should

contain event sequences that occurred within similar envi-

ronments. The notion of similarity is defined within the use

case description. Therefore, each use case may contain dif-

ferent criteria to compare event sequences. A group is called

significant if the amount of actions exceeds a preconfigured

limit. Only significant groups are considered in the next step.

In the complex example use case, the actions should be

grouped by similar radio stations and nearby road segments.

Thus, each resulting group is characterizable by a single

radio station and a set of road segment ids. The resulting

group properties of the simple use case contain a single

button label and a single road segment id because a button

click is only related to a single road segment and not to a

subgraph of the whole road network.

C. Situation Discovery

Finally, the Situation Recognizer uses the group properties

to parametrize a prespecified temporal event pattern in order

to extract similar situations. Thereby, the group properties

are interpreted as a description of the environment the

actions occurred in. If a similar situation is found the HMI

will be informed about the group properties containing the

environmental aspects as well as future values of use case

relevant attributes.

The temporal event pattern that triggers a notification of

the complex example use case may look like this:

StationChange and

StationChange.station ! = Group.station

→

Context.location == Group.location

In words, if the last radio station change switched to a radio

station that is different to a radio station property value of a

discovered group and if the location of the current context is

similar to the location of the same group then notify the HMI

about the detected situation. The temporal event pattern of

the simple use case contains only the location comparison.

An overview about all steps discussed in this section is given

in Figure 3.

So far, a situation notification is only triggered in case a

significant group was found. This implies the instantiation

and parametrization of a temporal event pattern for the detec-

tion of the corresponding situation in case a certain amount

of similar actions occurred within the same environment.

Considering the radio example such a notion of the statement

”likely to happen” could be adequate but insufficient for

the dynamic buttons example. For the execution of resize

commands it is necessary to know the probability of a

button click within a certain environment cause the different

150

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

buttons are influencing one another concerning their sizes.

To calculate the probability of an occurrence it is necessary

to relate the amount of occurrences to the amount of non-

occurrences. But how does the prototype discover non-

occurrences? It is impractical or almost impossible to detect

and record all non-occurrences of actions that are unknown

so far. Therefore, the prototype does only observe a non-

occurrence of an action if the action happened at least once.

Additionally, the detection of non-occurrences will only be

constrained to an environment defined by the temporal event

pattern of the corresponding situation. Thus, the detection of

non-occurrences starts with the detection of a situation and

ends if the environment changes concerning the use case

relevant context attributes.

D. Implementation

The Situation Recognizer component is implemented us-

ing Java with Esper as its event processing unit for java

applications. At startup time the use case descriptions are

parsed and all action discovering patterns are generated

as EPL statements. Additionally, the global context that

gets appended to each incoming event gets initialized. This

guaranties that all use case relevant environmental aspects

are related to single events. The global context definition

is part of each use case description. A preprocessing step

for the context in form of a road detection algorithm is

outsourced into a separate library described in the next

Section.

VI. MAP MATCHING

In order to group actions by their occurrence on certain

roads it is necessary to first define the type of information we

like to group. In mobile applications the location information

often comprises of a latitude and a longitude value. Ap-

plying well-known density-based clustering algorithms like

DBSCAN [13] or MRStream [14] would result in arbitrary

clusters like the sum of all locations or groups of rectangular

regions. In case of an automotive environment the clusters do

not consist of arbitrary two dimensional regions because the

car movements are always constrained by roads. Therefore,

a cluster in the sense of a car is either a road segment

or subgraph of the whole road network. However, GPS

sensors provide latitude and longitude values that need to

be transformed into a unique road id identifying a certain

road segment. With the help of the road segment id it would

be possible to define a notion of similarity between road

segments by considering their road network distance.

The transformation of the latitude and longitude value into

a position that lies on the road network is called map match-

ing. The presented prototype includes an implementation of

a map matching algorithm that is used to preprocess the

location data before starting the action grouping process. It

is essentially the first part of an algorithm proposed by Hum-

A
c
ti
o
n

 D
is

c
o

v
e
ry

A
c
ti
o
n

 G
ro

u
p
in

g

Steps
Use Case

S
it
u
a

ti
o
n

 D
is

c
o

v
e
ry

Temporal event pattern

description of an action

e.g. find a radio station change

that is not followed by a radio

station change within 5 minutes

Description

Grouping Criteria

e.g. group by road

segment ids within a road

distance of 300 m

Pattern Matching

Groups

Actions

Pattern Matching

Temporal event pattern

description of the situation

triggering the notification

e.g. find a situation in which the

radio is set to a radio station

different to a station found in a

group and the road found in the

group

Notification

Figure 3. Overview Situation Recognizer

mel [15]. For our purposes this rather simple implementation

is sufficient.

The topological data, needed to perform map matching,

is based on the open source data provided by the Open-

StreetMap project [16]. Before this data can be used, it

has to be converted and inserted into a PostGIS database.

The conversion was done with the free version tool called

OSM2PO [17].

As mentioned above, the similarity between road seg-

ments needs to be calculated to decide if two road segments

belong to the same group or not. Two road segments are

declared to be similar if the road distance in between does

not exceed a certain amount. The calculation based on the

topological data is realized by pgRouting presented in [18].

It is also necessary to present the results in a human-

readable way to be comprehensible for the HMI user.

Therefore, a the street name needs to be extracted from the

resulting road segment id. This service is also provided by

the Map Matching library.

VII. CONCLUSION

We have presented a highly personalizable in-car-

infotainment prototype that is capable to adapt itself based

on the detection of regularities of its use in recurring envi-

ronments. Architectural aspects as well as implementation

details were discussed in order to describe primarily the

technical problems.

The examples throughout this paper were mainly focused

on use cases that try to adapt the HMI based on regular user

151

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

interactions at certain roads. However, it is up to the expert to

decide, which dependencies should be used for a use case.

For this purpose, we introduced the use case descriptions

that are specified by an expert and used by the Situation

Recognizer to control the whole process. While specifying

the use cases the expert may decide to group button clicks

only by time intervals and radio changes by time intervals

and road segments.

VIII. FUTURE WORK

In the near future we plan to implement a feedback

mechanism of the HMI in order to skip notifications that are

not processed by the HMI. At the current stage, the Situation

Recognizer works independently of any real execution of a

personalization use case at the HMI. Therefore, it might

happen that certain HMI personalization proposals were

deactivated by the HMI user without notifying the Situation

Recognizer. In this case, it is necessary to inform the

grouping process to delete the corresponding groups or/and

to prevent the grouping process to rediscover the same

groups.

The approach of specifying and configuring personal-

ization use cases in a generic way without the need to

reprogram the Situation Recognizer offers a wide range of

possibilities for rapid prototyping of personalizable appli-

cations. We plan to implement and test several new HMI

adaptations that are based on the analysis of sequences of

user interactions containing different road segments as well

as time intervals. Especially, the prediction of the destination

based on regular environments would enhance the usability

of future navigation systems.

REFERENCES

[1] D. Ashbrook and T. Starner, “Learning Significant Locations
and Predicting User Movement with GPS,” in Int. Symposium
on Wearable Computers, 2002, pp. 101–108.

[2] G. Adomavicius and A. Tuzhilin, “Context-Aware Recom-
mender Systems,” in 2nd Workshop on Context-Aware Rec-
ommender Systems, 2010.

[3] J. Shen, E. Fitzhenry, and T. G. Dietterich, “Discovering
frequent work procedures from resource connections,” in Pro-
ceedings of the 13th Int. Conf. on Intelligent user interfaces,
2009, pp. 277–285.

[4] O. Brdiczka, N. M. Su, and J. B. Begole, “Temporal Task
Footprinting: Identifying Routing Tasks by Their Temporal
Patterns,” in 14th Int. Conf. on Intelligent User Interfaces,
2010, pp. 281–284.

[5] O. Coutand, S. Haseloff, S. L. Lau, and K. David, “A Case-
based Reasoning Approach for Personalizing Location-aware
Services,” in 1st Workshop on Case-based Reasoning and
Context Awareness, 2006.

[6] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on
context-aware systems,” Int. Journal of Ad Hoc and Ubiq-
uitous Comput., vol. 2, no. 4, pp. 263–277, 2007.

[7] A. K. Dey and G. D. Abowd, “The context toolkit: Aiding
the development of context-aware applications,” in Proc. of
the Conf. on Human Factors in Computing Systems, 1999,
pp. 434–441.

[8] J. H. Kang, W. Welbourne, B. Stewart, and G. Borriello,
“Extracting Places from Traces of Locations,” in Proc. of the
2nd ACM Int. Workshop on Wireless Mobile Applications and
Services on WLAN Hotspots, 2004.

[9] C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Ter-
veen, “Discovering personally meaningful places: An inter-
active clustering approach,” ACM Trans. Inf. Syst., vol. 25,
p. 12, 2007.

[10] L. Liao, D. Fox, and H. Kautz, “Location-Based Activity
Recognition using Relational Markov Networks,” in Proc. of
the Int. Joint Conf. on Artificial Intelligence, 2005.

[11] S. Rogers, C. nicolas Fiechter, and C. Thompson, “Adaptive
User Interfaces for Automotive Environments,” in Procs.
IEEE Intelligent Vehicles Symposium 2000, 2000, pp. 662–
667.

[12] EsperTech Inc., “Complex Event Processing,”
http://esper.codehaus.org/, Last access: 2010-12-20.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-
based algorithm for discovering clusters in large spatial
databases with noise,” in Proc. of 2nd Int. Conf. on Knowl-
edge Discovery in Databases and Data Mining. AAAI Press,
1996, pp. 226–231.

[14] L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang,
“Density-based clustering of data streams at multiple resolu-
tions,” ACM Trans. Knowl. Discov. Data, vol. 3, no. 3, pp.
1–28, 2009.

[15] B. Hummel, “Map Matching for Vehicle
Guidance(draft),” 2006, http://www.mrt.uni-
karlsruhe.de/z/publ/download/hummel2006b.pdf, Last access:
2010-12-20.

[16] OSM Project, “Open Street Map,”
http://www.openstreetmap.org/, Last access: 2010-12-20.

[17] C. Moeller, “OSM2PO,” http://www.osm2po.de, Last access:
2010-12-20.

[18] pgRouting Project, “pgRouting,” http://www.pgrouting.org/,
Last access: 2010-12-20.

152

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

