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Abstract—Integration of different kinds of traffic on the 
Internet can be resolved by employing QoS policies on access 
networks. One possible solution is to use WTFC (Window-
Time Flow Control) flow control algorithm on access network. 
In this paper, the WTFC-TCP flow control proxy is introduced 
in order to exploit the ability of WTFC to estimate the optimal 
working point for the available capacity and to keep on 
average empty node buffers. A basic proxy model is defined 
and elementary congestion signaling algorithms for flows 
directed to and from access network are applied. Simulation 
experiments have shown potential successfulness of the 
concept. 
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I.  INTRODUCTION 
WTFC (Window-Time Flow Control) [12] was designed 

to keep a network at the optimal working point, using its fair 
share of the available capacity and keeping node buffers 
empty. This makes it suitable for integrated services 
implementation. The problem is the coexistence of WTFC 
with the more aggressive TCP (Transport Control Protocol). 
On the other hand, TCP is the prevailing technology that will 
be hard to replace in the near future. One possible solution is 
to introduce new technologies on access network without 
changing TCP/IP protocol stack on the rest of the network.  

The idea of this paper is that the cooperation of WTFC 
on access network and TCP on the rest of the network would 
be beneficial for deployment of integrated services. For that 
purpose, a special gateway or proxy node is needed to 
transfer packets from one protocol to the other, and to map 
their flow controls. We explore the possibility of 
interconnecting WTFC with TCP and show some simulation 
results using WTFC-TCP flow control gateway/proxy. 

In Section 2, an overview of related work on improving 
TCP performance via a proxy and on mapping TCP to 
another protocol is given. A brief description of TCP and 
WTFC flow control is given in Section 3. Section 4 
introduces a model used for WTFC-TCP interconnection, 
highlights the problems encountered when mapping the two 
protocols' flow control and proposes basic algorithms to 
successfully perform the mapping. Simulation results are 
given in Section 5 and conclusions with future work in 
Section 6. 

II. RELATED WORK 
Intensive work has been done on improving TCP 

performance over a combination of wireless access and fixed 
transport network. The dominant technology, if fixed side 
TCP client is not to be altered, is using PEPs (Performance 
Enhancing Proxies). A survey of existing performance 
enhancing proxy schemes is given in [4]. PEP schemes in the 
literature include modifying acknowledgment (ACK) 
spacing [3], generating local acknowledgments for large 
bandwidth-delay products (BDP) [14], variable bandwidth 
[7], or wireless links [9], specifically negative 
acknowledgments, and performing local retransmission 
[1][3][9], as well as ACK filtering and reconstruction [2]. 

The accent in the above schemes is on error recovery and 
hiding errors caused by unreliable nature of wireless links 
from TCP on the fixed side, so that standard TCP congestion 
control wouldn’t unnecessarily trigger and reduce congestion 
window. Proposals concerning actual flow control are 
receiver window signaling according to free space in proxy 
buffers [1][14], ACK spacing [3] and changing window 
according to congestion measurements [13]. Aggregating 
flows that pass through the same Base Station to the same 
mobile host and using aggregate state variables instead of 
per-flow state variables is explored in [5]. 

Several approaches, like [1], suggest splitting connection 
between fixed host and mobile host at the Base Station. A 
protocol optimized for wireless links is employed on the 
wireless part of the network. Our work follows a similar idea 
of using different protocols for different parts of the network. 
However, even though applying WTFC-TCP connection on 
heterogeneous wired-cum-wireless networks looks 
promising, due to WTFC flow and error control being 
decoupled, in this paper a general type of link is considered. 
Interconnecting congestion controls of TCP and another 
protocol is described in [6]. An XCP-TCP gateway is used 
that interconnects XCP (eXplicit Control Protocol) and TCP 
networks. It maps the congestion control functions between 
TCP and XCP by mapping incipient congestion of XCP 
domain into drop event of TCP domain. 

III. TCP AND WTFC FLOW CONTROL MECHANISMS 

A. TCP Flow Control 
Transport Control Protocol (TCP) uses window flow 

control consisting of four main mechanisms: slow start (SS), 
congestion avoidance (CA), fast retransmission and fast 
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Figure 1.  Delay curves depending on α in WT space (from [10]) 

recovery, although many more have been proposed in the 
literature. 

TCP sender maintains two variables that determine 
window size and the rate of its increment: congestion 
window and slow start threshold [8]. Congestion window 
(cwnd) represents the amount of data bytes that can be 
transmitted at a given time before receiving an 
acknowledgment (ACK) from the receiver. Slow start 
threshold (ssthresh) serves as a boundary that determines if 
slow start or congestion avoidance mechanism is used to 
control data transmission. Ssthresh can be recognized as the 
sender’s estimation of optimal packet window. 

Slow start mechanism is used while cwnd<ssthresh, i.e. 
at the beginning of a transfer, or after detecting network 
congestion. Packet loss or ECN (Explicit Congestion 
Notification) serve as congestion indication. Initially, TCP 
sender sets ssthresh to receiver’s advertised window and 
cwnd to 1 packet and increases it by 1 for each ACK 
received, effectively doubling cwnd every round trip time 
(RTT). After packet loss, ssthresh is set to half the current 
cwnd value and slow start begins again from its initial cwnd. 

When cwnd value exceeds ssthresh, TCP sender transits 
from slow start to congestion avoidance mechanism. During 
congestion avoidance, cwnd is incremented by 
approximately 1 segment per RTT. Congestion avoidance 
continues until a packet loss is detected. 

Basic indication of packet loss is the occurrence of 
retransmission timeout (RTO). RTO is dynamically 
computed based on RTT value and its variance. Fast 
retransmission algorithm shortens the time needed to detect 
packet loss. After receiving an out-of-order packet, TCP 
receiver sends a duplicate ACK to inform the sender of a 
possible packet loss. When the sender receives three 
duplicated ACKs, it concludes that the packet has been lost. 
Sender can then perform a retransmission of what appears to 
be the missing packet, without waiting for RTO to expire. 

To benefit from fast retransmission, fast recovery 
mechanism was introduced. After a packet loss detection and 
fast retransmission, values of ssthresh and cwnd are set to 
cwnd/2 and ssthresh+3, respectively. This takes into account 
packets that have left the network and have generated three 
duplicated ACKs. After receiving an ACK for the 
retransmitted packet, the sender sets cwnd to ssthresh. 

B. Window Time Flow Control 
Window Time Flow Control (WTFC) uses window and 

RTT measurements to calculate optimal window and packet 
sending rate [12]. WT (window-time) space is used for 
analysis. W,T plane is determined by the network optimal 
working point (W0, T0), T0 and W0 being minimal RTT and 
optimal window in case of only one user, respectively. This 
point represents the total capacity of the network from the 
packet transmitter’s point of view. μ=W0/T0 would then be 
the optimal sending rate. 

When more users share the network, each should acquire 
a proportional part of the network capacity, μj = αμ, under 
the assumption that α(0,1) is equal for all users. Optimal 
working point (W0(α), T0(α)) of each transmitter, that now 
observes reduced capacity μj, depends on (W0, T0) and the 

parameter α. The pair (W0(α), T0(α)) also determines delay 
for each transmitter: 















)(,
)(
)(

)(,)(

0
0

0

00







WW
W
TW

WWT
T  

Parameter α defines a set of delay response curves in WT 
space. Their breaking points, being at the same time optimal 
working points, are placed along the hyperbola-like curve 
defined by constant bandwidth delay product; see Figure 1. 

When packet acknowledgment arrives, transmitter 
measures new coordinates in W,T plane, which allows it to 
compute α. Then it calculates the optimal working point C, 
i.e. optimal sending period t0(α) and window W0(α), reducing 
the packet rate from the point A according to 
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Tp in the above expressions is the propagation delay. 
WTFC transmitter requires information about the total 
network capacity (W0, T0) for WTFC to function. Network 
nodes can signal parameters needed to compute the capacity 
of the bottleneck link using special fields in packet headers. 
Alternatively, transmitter can estimate the capacity [11]. 
Experimental simulations in [11] have shown that signaling 
yields better fairness. A special Fast-Start algorithm is used 
for sending packets before the first acknowledgment arrives 
and optimal working point can be computed. 

WTFC does not use packet loss to detect congestion and 
simulation measurements have shown that WTFC algorithm 
can provide high network utilization with on average empty 
node buffers [12]. 
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Figure 2.  WTFC-TCP flow control proxy model 

IV. CONNECTING TCP WITH WTFC 
The goal of our concept is to exploit the ability of WTFC 

to estimate the optimal working point for its share of the 
available capacity, while keeping the property of TCP to 
compete for its share of the total capacity. 

A. Basic connecting architecture 
Model of the access network connected to the Internet 

provider network and core Internet is used as the basic 
connecting architecture. The model is further developed 
using packet queues abstraction; see Figure 2. On both 
WTFC and TCP domains, WTFC and TCP sender packet 
queues are considered. Of the four, two are located on the 
proxy node. The WTFC and TCP flows are interconnected 
through the interconnection queues located on the proxy 
node. Interconnection queues, called proxy buffers, are 
available for manipulation. 

The WTFC-TCP flow control proxy is a stateful (per 
flow) proxy and all the traffic of an access network is 
supposed to pass through it. Its placement could be in DSL 
Access Multiplexers or in Base Stations of cellular networks. 
Those are highly distributed devices placed relatively near 
the end-user, with moderate several hundred flows passing 
through at a given time. 

We consider four main scenarios: 
 TCP to WTFC domain flow; congestion on the TCP 

sender domain. 
 TCP to WTFC domain flow; congestion on the 

WTFC receiver domain. 
 WTFC to TCP domain flow; congestion on the 

WTFC sender domain. 
 WTFC to TCP domain flow; congestion on the TCP 

receiver domain. 
In case of congestion on the sender side, it is enough to 

simply translate the packet from one protocol to the other on 
the proxy and forward it immediately, since the proxy buffer 
will not be saturated. Intervention is needed when congestion 
is on the receiver side. In that case, packets will begin to 
accumulate in the proxy buffer and some sort of mechanism 
should slow the sender down, while at the same time keeping 
the efficiency high. 

Since both WTFC and TCP protocols use 
acknowledgments (ACKs) to estimate network condition, 
ACK manipulation is the first choice to achieve desired 

performance. Three different possibilities are detected, to 
close acknowledgments loopback at the near-end (e.g. proxy 
TCP receiver to TCP sender), at the far-end (e.g. WTFC 
receiver to the TCP sender), and on the proxy buffer (e.g. 
proxy WTFC receiver to WTFC sender after a packet is 
removed from the WTFC-TCP proxy buffer). 

Proxy buffer packet losses are acceptable with far-end 
ACK loopback, because those buffers are included in the 
normal queue chain of the packet trajectory. However, with 
near-end and buffer ACK policies, proxy buffer packet loss 
is unacceptable, because it is not covered with the packet 
loss recovery in either WTFC or TCP domain.  

B. Basic algorithms for TCP to WTFC domain flows 
In case of TCP to WTFC domain flow, TCP sender is 

located at the distant node and TCP receiver at the proxy 
node, while WTFC sender is located at the proxy node and 
WTFC receiver at the distant node. In case of congestion in 
TCP domain, TCP should react normally to packet loss. 
When congestion arises in WTFC domain, proxy WTFC 
sender should reduce its sending rate using normal WTFC 
mechanisms. However, TCP sender continues to use its 
current congestion window and TCP-WTFC proxy buffer 
tends to overflow. 

When far-end ACK loopback is used, ACKs in TCP 
domain are sent after corresponding ACKs from WTFC 
domain are received at the proxy, so that TCP sender can 
have accurate overall RTT information. 

Proxy WTFC sender can calculate optimal sending 
interval and window for WTFC domain using either capacity 
estimation or explicit signaling. TCP-WTFC proxy buffer is 
used between TCP and WTFC domain to forward packets 
with the optimal interval computed. ACKs are forwarded 
directly between WTFC and TCP domain. Their spacing 
paces TCP sender to optimal sending interval. Still, TCP 
sender increases its cwnd, either doubling it per RTT if in SS 
phase, or incrementing it by one per RTT if in CA phase. 
Consequently, packets start accumulating in the TCP-WTFC 
proxy buffer. 

Despite the reason for TCP-WTFC proxy buffer 
overflow, it is obvious that some kind of WTFC to TCP 
congestion signaling is needed. TCP reacts to packet losses, 
so packets are intentionally discarded from the TCP-WTFC 
proxy buffer. The algorithm is triggered when TCP-WTFC 
proxy buffer reaches two times the proxy WTFC sender 
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Figure 3.  Simulation network topology. 

congestion window. 
Simulation results show acceptable performance of the 

proposed far-end ACK policy with the induced packet losses 
algorithm, so near-end and buffered ACK policies are left for 
future research. 

C. Basic algorithms for WTFC to TCP domain flows 
In case of WTFC to TCP domain flow, WTFC sender is 

located at the distant node and WTFC receiver at the proxy 
node, while TCP sender is located at the proxy node and 
TCP receiver at the distant node. In case of congestion in 
WTFC domain, WTFC should react normally by calculating 
the optimal packet rate and window. When congestion arises 
in TCP domain, proxy TCP sender should reduce its sending 
rate as a reaction to packet losses. However, WTFC sender 
continues to use its current congestion window and WTFC-
TCP proxy buffer tends to overflow. 

All three ACK loopback policies are considered in this 
case: far-end, near-end and proxy buffer loopback. 

Further, proxy TCP sender can be a full or modified TCP 
sender. Near-end ACK loopback requires a full TCP sender 
to be used, to let it compete with other TCP flows in TCP 
domain. Far-end ACK loopback provides some feedback for 
WTFC sender from TCP domain as well as WTFC domain, 
so modified proxy TCP sender can be used. 

Far-end ACK policy was at first considered with proxy 
TCP forwarder, a simple process that sends whatever packet 
is received at the WTFC-TCP proxy buffer. The performance 
of this combination was unpredictable, because both path 
capacity estimation and load estimation mechanisms of 
WTFC were influenced by TCP domain network load. This 
resulted in poor fairness, where WTFC used less than its fair 
share when congestion in TCP domain was low, and more 
than its fair share during heavy congestion in TCP domain. 

To compensate for the TCP domain influence, TCP 
forwarder was then replaced with the full TCP sender. This 
had further effects on WTFC estimation processes due to the 
proxy TCP sender slow start mechanism.  

Finally, a variant of TCP sender without initial slow start 
phase was included, but acceptable performance could not 
always be obtained. 

As expected, near-end ACK loopback suffered from lack 
of flow control between WTFC and TCP domains. In this 
case, full proxy TCP sender was the only choice. Obviously, 
some signaling from TCP to WTFC domain is indispensable. 

At this point, the proxy buffer ACK loopback was 
considered, with full TCP sender. Proxy WTFC receiver 
sends ACK to proxy WTFC sender after a packet is removed 
from WTFC-TCP proxy buffer. This way, if packets are 
accumulated at the WTFC-TCP proxy buffer, flow of WTFC 
acknowledgments is delayed, thus signaling possible 
congestion in TCP domain. 

However, early simulations did not achieve acceptable 
performance. The reason was the proxy TCP sender 
algorithm that builds up its cwnd despite the constrained 
number of packets available from WTFC domain. When 
congestion in TCP domain finally occurs, proxy TCP sender 
continues to transfer incoming WTFC packets as allowed by 
high cwnd, despite the lack of TCP acknowledgments.  

To limit cwnd build up on proxy TCP sender, a simple 
limiting algorithm is introduced: if cwnd tends to excess the 
current window (number of packets in flight) plus packets in 
the WTFC-TCP proxy buffer, cwnd is limited to that value 
plus some additive value (5 packets in simulations 
performed). 

The combination of the proxy buffer ACK loopback with 
cwnd limiting policy provided acceptable performance in the 
simulation environment. 

V. SIMULATIONS 
Simulations were conducted using ns2 simulator (version 

2.34) on the simplistic topology with seven nodes, node n2 
being WTFC-TCP proxy, shown in Figure 3. Link capacity 
of 10 Mb/s between nodes n2 and n3 emulates a possible 
ADSL connection to the Internet which is often of restricted 
capacity. 10 Mb/s capacity between nodes n2 and n1 
emulates often scarce resources in parts of an Internet 
provider network. In order to present the induced packet loss 
algorithm, Figure 6 was taken from a simulation conducted 
on the same topology, but with 100 Mb/s capacity between 
nodes n1 and n2. 

In simulations presented, a flow under observation 
between nodes n0 and n4 starts at t=0s and ends at t=16s, 
which is the duration of simulation. In Section A, results for 
a TCP to WTFC domain flow from node n0 to node n4 are 
presented, and in Section B, results for a WTFC to TCP 
domain flow from node n4 to node n0. From t=2s to t=6s ten 
competing TCP Reno flows are active in TCP domain 
between nodes n0 and n2, and from t=10s to t=14s ten 
competing WTFC flows are active in WTFC domain 
between nodes n2 and n4. Competing flows use the same 
direction as the flow observed. Drop Tail algorithm is used 
on links in the WTFC domain and ARED (Adaptive RED) 
on links in the TCP domain. 

To examine the effects of WTFC-TCP flow control 
proxy on QoS sensitive applications additional simulations 
were conducted on the same topology. In those simulations a 
UDP/CBR (User Datagram Protocol / Constant Bit Rate) 
flow is active in the WTFC domain between nodes n6 and n5 
from t=1s to t=16s. The rate used is 64 kb/s, which is the 
VoIP standard. The UDP/CBR flow is placed in the WTFC 
domain rather than in the TCP domain, so as not to let TCP 
influence it. The assumption here is that QoS would be 
otherwise provided (enforced) in the provider network by 
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Figure 4. TCP to WTFC domain flow packet dynamics. 

 
Figure 5. TCP to WTFC domain flow windows and proxy buffer 

occupancy. 

 
Figure 6. Packet dynamics in the event of induced packet loss. 

 
Figure 7. WTFC to TCP domain flow packet dynamics. 

Traffic Engineering (TE) under DiffServ paradigm.  

A. TCP to WTFC domain flows 
Packet flow dynamics for a TCP to WTFC domain flow 

with the induced packet loss algorithm on TCP-WTFC proxy 
buffer is shown in Figure 4. Slow start algorithm of the TCP 
sender causes losses and disrupted flow of packets in the first 
second of simulation time. In time intervals when the 
competing flows are active the slope of the curve, 
representing throughput, is reduced as expected. Calculated 
throughput is shown in Figure 9 and discussed in Section C. 

Window for TCP sender and proxy WTFC sender, as 
well as TCP-WTFC proxy buffer occupancy are shown in 
Figure 5. The value of the TCP sender window going to 240 
packets at the beginning of the simulation is not shown in the 
figure in order to limit the scale of the y-axis. TCP sender 
window follows the additive increase-multiplicative decrease 
(AIMD) rule of the TCP Reno algorithm, while proxy 
WTFC sender keeps its window steady according to the 
calculated optimal working point. Low TCP-WTFC proxy 
buffer occupancy shows the efficiency of the applied 
algorithm. 

Packet dynamics in the event of an induced packet loss is 

shown in Figure 6. The increasing latency between TCP 
receive event and WTFC forward event on the proxy is due 
to the increasing proxy buffer occupancy, eventually 
resulting in induced packet loss and duplicated ACKs. After 
the packet loss, the TCP window is halved by the TCP Reno 
flow control algorithm. Consequently, there is a pause in 
sending new packets. TCP-WTFC proxy buffer deque, 
regulated by Proxy WTFC sender, remains steady. 

B. WTFC to TCP domain flows 
Packet flow dynamics for a WTFC to TCP domain flow 

with WTFC-TCP proxy buffer ACK loopback and the proxy 
TCP sender cwnd limiting algorithm is shown in Figure 7. 
Performance observed is similar to that of Figure 4. The first 
slope is smoother then in Figure 4 because WTFC sender 
does not use the aggressive slow start algorithm. Optimal 
working point is computed upon the arrival of the first ACK. 

Window for WTFC sender and TCP proxy sender, as 
well as WTFC-TCP proxy buffer occupancy are shown in 
Figure 8. Low WTFC-TCP proxy buffer occupancy shows 
the efficiency of the applied algorithm. Proxy TCP sender 
window growth is limited to the number of packets in flight 
plus the number of packets in proxy buffer plus 5. Therefore, 
proxy TCP sender window is steady and following the 
change of WTFC window when there is no congestion in 
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Figure 8. WTFC to TCP domain flow windows and proxy buffer 

occupancy. 

 
Figure 9. Throughput using WTFC-TCP flow control proxy and using 

standard TCP flow control. 

 
Figure 10. Delay of a CBR flow using WTFC-TCP flow control proxy and 

using standard TCP flow control. 

 
Figure 11. Jitter (MAPDV2) of a CBR flow using WTFC-TCP flow control 

proxy and using standard TCP flow control. 

TCP domain. Otherwise it follows the TCP Reno AIMD 
rule. The cwnd spike at t=2s shows that cwnd limiting 
algorithm should be improved. 

C. Throughput, delay and jitter 
Simulation results presented in this section were obtained 

with TCP to WTFC domain flows. Results with WTFC to 
TCP domain flows are similar. Comparison is made with 
results obtained when traditional TCP flow control is 
deployed on the entire network. Topology used is the same 
as with the WTFC-TCP proxy. Competing flows in this 
TCP-all network are TCP Reno flows in both the time 
interval from t=2s to t=6s and the time interval from t=10s to 
t=14s. Additional simulations were conducted on the TCP-all 
network with ARED algorithm on all links. 

Throughput achieved by the TCP to WTFC domain flow 
under observation is comparable to that of a standard TCP 
Reno flow on the same topology, as well as on the topology 
with only ARED; see Figure 9. It shows good channel 
utilization when there is no competing traffic and fair 
reaction when competing flows are present. 

The property of WTFC to estimate the optimal working 
point and to keep on average empty node buffers is expected 

to result in some QoS metric improvements when using 
WTFC to TCP flow control proxy, in comparison with 
results using only traditional TCP flow control. For 
verification, delay and jitter of VoIP traffic, represented by a 
UDP/CBR flow between node n6 and node n5, are observed. 

As expected, delay when using the WTFC-TCP flow 
control proxy is generally smaller than delay on the 
equivalent TCP-all network, both with just ARED and with 
the combination of Drop Tail and ARED algorithms; see 
Figure 10. Peak delay with the proxy is 60 ms and without 
the proxy about 125 ms. While competing flows between 
nodes n2 and n4 are active, delay with the proxy is stabilized 
below 30 ms. In the same interval, delay of the TCP flow 
with ARED has almost 10 times greater jitter and the delay 
of the TCP flow with ARED and Drop Tail is near the peak 
value. 

Jitter estimator MAPDV2 according to ITU-T G.1020 
Recommendation is used to compute the jitter. Results are 
shown in Figure 11. Peak jitter value with the WTFC-TCP 
flow control proxy is 20 ms, while the same value for TCP-
all flows exceeds 100 ms. The proxy reduces jitter in general 
as well as the fluctuation of jitter values. While competing 
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flows in WTFC domain are active, jitter drops from peak 
value to below 5 ms. 

The UDP/CBR flow passes through the link between 
nodes n2 and n3 together with the TCP to WTFC domain 
flow and competing WTFC flows, or together with 
equivalent TCP flows. Both delay and jitter have the lowest 
values in the time interval from t=10s to t=14s when 
competing flows in TCP domain are active. Congestion is 
then present in the TCP domain, thus leaving the link 
between nodes n2 and n3 unsaturated. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, the concept of resolving the QoS at the 

edge between access network and the Internet is explored 
using WTFC flow control on the access network and 
standard TCP on the Internet. The WTFC-TCP flow control 
proxy is introduced in order to exploit the ability of WTFC 
to estimate the optimal working point for the available 
capacity and to keep on average empty node buffers. 

A basic proxy model is defined, consisting of packet 
queues in both WTFC and TCP domains. WTFC and TCP 
flows are interconnected through proxy buffers located on 
the proxy node. 

In this scenario main flow control problems arise when 
congestion is present on the receiver side of the model. In 
this case some kind of flow control signalization is needed 
between WTFC and TCP domains. 

When a flow passes from TCP to WTFC domain, WTFC 
congestion is signaled to TCP sender by induced single 
packet loss. Proxy deliberately discards a packet when the 
TCP to WTFC proxy buffer occupancy exceeds double value 
of proxy WTFC sender congestion window. This way, the 
TCP sender cwnd is halved. Simulation results have shown 
that this simple mechanism operates efficiently. 

In a scenario when a flow passes from WTFC to TCP 
domain, congestion notification from TCP domain to WTFC 
sender is obtained using delayed local WTFC 
acknowledgments. These are sent at the moment when a 
packet is taken from the WTFC to TCP proxy buffer. 
Additional proxy TCP sender cwnd limiting algorithm is 
used to prevent TCP from unnecessarily increasing cwnd 
during congestion in WTFC domain. Simulation results have 
shown that these two mechanisms combined provide 
satisfactory performance. 

Simulation results presented make the WTFC-TCP flow 
control proxy concept promising for further research. 
Throughput achieved is comparable to that of a TCP-all 
network. Delay and jitter of a VoIP flow passing through the 
WTFC domain were taken in consideration as QoS metrics. 
They show considerable improvement over delay and jitter 
on a TCP-all network. Future work includes expanding 

algorithms with more sophisticated features as well as 
conducting experiments on more complex topologies and in 
wider condition range. Finally, the QoS for multimedia flows 
in integrated environment with data traffic needs to be 
extensively verified. 
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