
WTFC to TCP Flow Control Proxy

Vesna Pekic, Ante Kristic, Julije Ozegovic
Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture

University of Split
Split, Croatia

e-mail: vesna.pekic@fesb.hr, ante.kristic@fesb.hr, julije.ozegovic@fesb.hr

Abstract—Integration of different kinds of traffic on the
Internet can be resolved by employing QoS policies on access
networks. One possible solution is to use WTFC (Window-
Time Flow Control) flow control algorithm on access network.
In this paper, the WTFC-TCP flow control proxy is introduced
in order to exploit the ability of WTFC to estimate the optimal
working point for the available capacity and to keep on
average empty node buffers. A basic proxy model is defined
and elementary congestion signaling algorithms for flows
directed to and from access network are applied. Simulation
experiments have shown potential successfulness of the
concept.

Keywords-access network; WTFC; QoS; Flow Control Proxy

I. INTRODUCTION
WTFC (Window-Time Flow Control) [12] was designed

to keep a network at the optimal working point, using its fair
share of the available capacity and keeping node buffers
empty. This makes it suitable for integrated services
implementation. The problem is the coexistence of WTFC
with the more aggressive TCP (Transport Control Protocol).
On the other hand, TCP is the prevailing technology that will
be hard to replace in the near future. One possible solution is
to introduce new technologies on access network without
changing TCP/IP protocol stack on the rest of the network.

The idea of this paper is that the cooperation of WTFC
on access network and TCP on the rest of the network would
be beneficial for deployment of integrated services. For that
purpose, a special gateway or proxy node is needed to
transfer packets from one protocol to the other, and to map
their flow controls. We explore the possibility of
interconnecting WTFC with TCP and show some simulation
results using WTFC-TCP flow control gateway/proxy.

In Section 2, an overview of related work on improving
TCP performance via a proxy and on mapping TCP to
another protocol is given. A brief description of TCP and
WTFC flow control is given in Section 3. Section 4
introduces a model used for WTFC-TCP interconnection,
highlights the problems encountered when mapping the two
protocols' flow control and proposes basic algorithms to
successfully perform the mapping. Simulation results are
given in Section 5 and conclusions with future work in
Section 6.

II. RELATED WORK
Intensive work has been done on improving TCP

performance over a combination of wireless access and fixed
transport network. The dominant technology, if fixed side
TCP client is not to be altered, is using PEPs (Performance
Enhancing Proxies). A survey of existing performance
enhancing proxy schemes is given in [4]. PEP schemes in the
literature include modifying acknowledgment (ACK)
spacing [3], generating local acknowledgments for large
bandwidth-delay products (BDP) [14], variable bandwidth
[7], or wireless links [9], specifically negative
acknowledgments, and performing local retransmission
[1][3][9], as well as ACK filtering and reconstruction [2].

The accent in the above schemes is on error recovery and
hiding errors caused by unreliable nature of wireless links
from TCP on the fixed side, so that standard TCP congestion
control wouldn’t unnecessarily trigger and reduce congestion
window. Proposals concerning actual flow control are
receiver window signaling according to free space in proxy
buffers [1][14], ACK spacing [3] and changing window
according to congestion measurements [13]. Aggregating
flows that pass through the same Base Station to the same
mobile host and using aggregate state variables instead of
per-flow state variables is explored in [5].

Several approaches, like [1], suggest splitting connection
between fixed host and mobile host at the Base Station. A
protocol optimized for wireless links is employed on the
wireless part of the network. Our work follows a similar idea
of using different protocols for different parts of the network.
However, even though applying WTFC-TCP connection on
heterogeneous wired-cum-wireless networks looks
promising, due to WTFC flow and error control being
decoupled, in this paper a general type of link is considered.
Interconnecting congestion controls of TCP and another
protocol is described in [6]. An XCP-TCP gateway is used
that interconnects XCP (eXplicit Control Protocol) and TCP
networks. It maps the congestion control functions between
TCP and XCP by mapping incipient congestion of XCP
domain into drop event of TCP domain.

III. TCP AND WTFC FLOW CONTROL MECHANISMS

A. TCP Flow Control
Transport Control Protocol (TCP) uses window flow

control consisting of four main mechanisms: slow start (SS),
congestion avoidance (CA), fast retransmission and fast

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Figure 1. Delay curves depending on α in WT space (from [10])

recovery, although many more have been proposed in the
literature.

TCP sender maintains two variables that determine
window size and the rate of its increment: congestion
window and slow start threshold [8]. Congestion window
(cwnd) represents the amount of data bytes that can be
transmitted at a given time before receiving an
acknowledgment (ACK) from the receiver. Slow start
threshold (ssthresh) serves as a boundary that determines if
slow start or congestion avoidance mechanism is used to
control data transmission. Ssthresh can be recognized as the
sender’s estimation of optimal packet window.

Slow start mechanism is used while cwnd<ssthresh, i.e.
at the beginning of a transfer, or after detecting network
congestion. Packet loss or ECN (Explicit Congestion
Notification) serve as congestion indication. Initially, TCP
sender sets ssthresh to receiver’s advertised window and
cwnd to 1 packet and increases it by 1 for each ACK
received, effectively doubling cwnd every round trip time
(RTT). After packet loss, ssthresh is set to half the current
cwnd value and slow start begins again from its initial cwnd.

When cwnd value exceeds ssthresh, TCP sender transits
from slow start to congestion avoidance mechanism. During
congestion avoidance, cwnd is incremented by
approximately 1 segment per RTT. Congestion avoidance
continues until a packet loss is detected.

Basic indication of packet loss is the occurrence of
retransmission timeout (RTO). RTO is dynamically
computed based on RTT value and its variance. Fast
retransmission algorithm shortens the time needed to detect
packet loss. After receiving an out-of-order packet, TCP
receiver sends a duplicate ACK to inform the sender of a
possible packet loss. When the sender receives three
duplicated ACKs, it concludes that the packet has been lost.
Sender can then perform a retransmission of what appears to
be the missing packet, without waiting for RTO to expire.

To benefit from fast retransmission, fast recovery
mechanism was introduced. After a packet loss detection and
fast retransmission, values of ssthresh and cwnd are set to
cwnd/2 and ssthresh+3, respectively. This takes into account
packets that have left the network and have generated three
duplicated ACKs. After receiving an ACK for the
retransmitted packet, the sender sets cwnd to ssthresh.

B. Window Time Flow Control
Window Time Flow Control (WTFC) uses window and

RTT measurements to calculate optimal window and packet
sending rate [12]. WT (window-time) space is used for
analysis. W,T plane is determined by the network optimal
working point (W0, T0), T0 and W0 being minimal RTT and
optimal window in case of only one user, respectively. This
point represents the total capacity of the network from the
packet transmitter’s point of view. μ=W0/T0 would then be
the optimal sending rate.

When more users share the network, each should acquire
a proportional part of the network capacity, μj = αμ, under
the assumption that α(0,1) is equal for all users. Optimal
working point (W0(α), T0(α)) of each transmitter, that now
observes reduced capacity μj, depends on (W0, T0) and the

parameter α. The pair (W0(α), T0(α)) also determines delay
for each transmitter:

)(,
)(
)(

)(,)(

0
0

0

00

WW
W
TW

WWT
T

Parameter α defines a set of delay response curves in WT
space. Their breaking points, being at the same time optimal
working points, are placed along the hyperbola-like curve
defined by constant bandwidth delay product; see Figure 1.

When packet acknowledgment arrives, transmitter
measures new coordinates in W,T plane, which allows it to
compute α. Then it calculates the optimal working point C,
i.e. optimal sending period t0(α) and window W0(α), reducing
the packet rate from the point A according to

 1)(,)(00
T
WTW

W
Tt p

or increasing it from the point B according to:

 1)(,)(00

p

p
p TT

T
WTTt

Tp in the above expressions is the propagation delay.
WTFC transmitter requires information about the total
network capacity (W0, T0) for WTFC to function. Network
nodes can signal parameters needed to compute the capacity
of the bottleneck link using special fields in packet headers.
Alternatively, transmitter can estimate the capacity [11].
Experimental simulations in [11] have shown that signaling
yields better fairness. A special Fast-Start algorithm is used
for sending packets before the first acknowledgment arrives
and optimal working point can be computed.

WTFC does not use packet loss to detect congestion and
simulation measurements have shown that WTFC algorithm
can provide high network utilization with on average empty
node buffers [12].

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Figure 2. WTFC-TCP flow control proxy model

IV. CONNECTING TCP WITH WTFC
The goal of our concept is to exploit the ability of WTFC

to estimate the optimal working point for its share of the
available capacity, while keeping the property of TCP to
compete for its share of the total capacity.

A. Basic connecting architecture
Model of the access network connected to the Internet

provider network and core Internet is used as the basic
connecting architecture. The model is further developed
using packet queues abstraction; see Figure 2. On both
WTFC and TCP domains, WTFC and TCP sender packet
queues are considered. Of the four, two are located on the
proxy node. The WTFC and TCP flows are interconnected
through the interconnection queues located on the proxy
node. Interconnection queues, called proxy buffers, are
available for manipulation.

The WTFC-TCP flow control proxy is a stateful (per
flow) proxy and all the traffic of an access network is
supposed to pass through it. Its placement could be in DSL
Access Multiplexers or in Base Stations of cellular networks.
Those are highly distributed devices placed relatively near
the end-user, with moderate several hundred flows passing
through at a given time.

We consider four main scenarios:
 TCP to WTFC domain flow; congestion on the TCP

sender domain.
 TCP to WTFC domain flow; congestion on the

WTFC receiver domain.
 WTFC to TCP domain flow; congestion on the

WTFC sender domain.
 WTFC to TCP domain flow; congestion on the TCP

receiver domain.
In case of congestion on the sender side, it is enough to

simply translate the packet from one protocol to the other on
the proxy and forward it immediately, since the proxy buffer
will not be saturated. Intervention is needed when congestion
is on the receiver side. In that case, packets will begin to
accumulate in the proxy buffer and some sort of mechanism
should slow the sender down, while at the same time keeping
the efficiency high.

Since both WTFC and TCP protocols use
acknowledgments (ACKs) to estimate network condition,
ACK manipulation is the first choice to achieve desired

performance. Three different possibilities are detected, to
close acknowledgments loopback at the near-end (e.g. proxy
TCP receiver to TCP sender), at the far-end (e.g. WTFC
receiver to the TCP sender), and on the proxy buffer (e.g.
proxy WTFC receiver to WTFC sender after a packet is
removed from the WTFC-TCP proxy buffer).

Proxy buffer packet losses are acceptable with far-end
ACK loopback, because those buffers are included in the
normal queue chain of the packet trajectory. However, with
near-end and buffer ACK policies, proxy buffer packet loss
is unacceptable, because it is not covered with the packet
loss recovery in either WTFC or TCP domain.

B. Basic algorithms for TCP to WTFC domain flows
In case of TCP to WTFC domain flow, TCP sender is

located at the distant node and TCP receiver at the proxy
node, while WTFC sender is located at the proxy node and
WTFC receiver at the distant node. In case of congestion in
TCP domain, TCP should react normally to packet loss.
When congestion arises in WTFC domain, proxy WTFC
sender should reduce its sending rate using normal WTFC
mechanisms. However, TCP sender continues to use its
current congestion window and TCP-WTFC proxy buffer
tends to overflow.

When far-end ACK loopback is used, ACKs in TCP
domain are sent after corresponding ACKs from WTFC
domain are received at the proxy, so that TCP sender can
have accurate overall RTT information.

Proxy WTFC sender can calculate optimal sending
interval and window for WTFC domain using either capacity
estimation or explicit signaling. TCP-WTFC proxy buffer is
used between TCP and WTFC domain to forward packets
with the optimal interval computed. ACKs are forwarded
directly between WTFC and TCP domain. Their spacing
paces TCP sender to optimal sending interval. Still, TCP
sender increases its cwnd, either doubling it per RTT if in SS
phase, or incrementing it by one per RTT if in CA phase.
Consequently, packets start accumulating in the TCP-WTFC
proxy buffer.

Despite the reason for TCP-WTFC proxy buffer
overflow, it is obvious that some kind of WTFC to TCP
congestion signaling is needed. TCP reacts to packet losses,
so packets are intentionally discarded from the TCP-WTFC
proxy buffer. The algorithm is triggered when TCP-WTFC
proxy buffer reaches two times the proxy WTFC sender

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Figure 3. Simulation network topology.

congestion window.
Simulation results show acceptable performance of the

proposed far-end ACK policy with the induced packet losses
algorithm, so near-end and buffered ACK policies are left for
future research.

C. Basic algorithms for WTFC to TCP domain flows
In case of WTFC to TCP domain flow, WTFC sender is

located at the distant node and WTFC receiver at the proxy
node, while TCP sender is located at the proxy node and
TCP receiver at the distant node. In case of congestion in
WTFC domain, WTFC should react normally by calculating
the optimal packet rate and window. When congestion arises
in TCP domain, proxy TCP sender should reduce its sending
rate as a reaction to packet losses. However, WTFC sender
continues to use its current congestion window and WTFC-
TCP proxy buffer tends to overflow.

All three ACK loopback policies are considered in this
case: far-end, near-end and proxy buffer loopback.

Further, proxy TCP sender can be a full or modified TCP
sender. Near-end ACK loopback requires a full TCP sender
to be used, to let it compete with other TCP flows in TCP
domain. Far-end ACK loopback provides some feedback for
WTFC sender from TCP domain as well as WTFC domain,
so modified proxy TCP sender can be used.

Far-end ACK policy was at first considered with proxy
TCP forwarder, a simple process that sends whatever packet
is received at the WTFC-TCP proxy buffer. The performance
of this combination was unpredictable, because both path
capacity estimation and load estimation mechanisms of
WTFC were influenced by TCP domain network load. This
resulted in poor fairness, where WTFC used less than its fair
share when congestion in TCP domain was low, and more
than its fair share during heavy congestion in TCP domain.

To compensate for the TCP domain influence, TCP
forwarder was then replaced with the full TCP sender. This
had further effects on WTFC estimation processes due to the
proxy TCP sender slow start mechanism.

Finally, a variant of TCP sender without initial slow start
phase was included, but acceptable performance could not
always be obtained.

As expected, near-end ACK loopback suffered from lack
of flow control between WTFC and TCP domains. In this
case, full proxy TCP sender was the only choice. Obviously,
some signaling from TCP to WTFC domain is indispensable.

At this point, the proxy buffer ACK loopback was
considered, with full TCP sender. Proxy WTFC receiver
sends ACK to proxy WTFC sender after a packet is removed
from WTFC-TCP proxy buffer. This way, if packets are
accumulated at the WTFC-TCP proxy buffer, flow of WTFC
acknowledgments is delayed, thus signaling possible
congestion in TCP domain.

However, early simulations did not achieve acceptable
performance. The reason was the proxy TCP sender
algorithm that builds up its cwnd despite the constrained
number of packets available from WTFC domain. When
congestion in TCP domain finally occurs, proxy TCP sender
continues to transfer incoming WTFC packets as allowed by
high cwnd, despite the lack of TCP acknowledgments.

To limit cwnd build up on proxy TCP sender, a simple
limiting algorithm is introduced: if cwnd tends to excess the
current window (number of packets in flight) plus packets in
the WTFC-TCP proxy buffer, cwnd is limited to that value
plus some additive value (5 packets in simulations
performed).

The combination of the proxy buffer ACK loopback with
cwnd limiting policy provided acceptable performance in the
simulation environment.

V. SIMULATIONS
Simulations were conducted using ns2 simulator (version

2.34) on the simplistic topology with seven nodes, node n2
being WTFC-TCP proxy, shown in Figure 3. Link capacity
of 10 Mb/s between nodes n2 and n3 emulates a possible
ADSL connection to the Internet which is often of restricted
capacity. 10 Mb/s capacity between nodes n2 and n1
emulates often scarce resources in parts of an Internet
provider network. In order to present the induced packet loss
algorithm, Figure 6 was taken from a simulation conducted
on the same topology, but with 100 Mb/s capacity between
nodes n1 and n2.

In simulations presented, a flow under observation
between nodes n0 and n4 starts at t=0s and ends at t=16s,
which is the duration of simulation. In Section A, results for
a TCP to WTFC domain flow from node n0 to node n4 are
presented, and in Section B, results for a WTFC to TCP
domain flow from node n4 to node n0. From t=2s to t=6s ten
competing TCP Reno flows are active in TCP domain
between nodes n0 and n2, and from t=10s to t=14s ten
competing WTFC flows are active in WTFC domain
between nodes n2 and n4. Competing flows use the same
direction as the flow observed. Drop Tail algorithm is used
on links in the WTFC domain and ARED (Adaptive RED)
on links in the TCP domain.

To examine the effects of WTFC-TCP flow control
proxy on QoS sensitive applications additional simulations
were conducted on the same topology. In those simulations a
UDP/CBR (User Datagram Protocol / Constant Bit Rate)
flow is active in the WTFC domain between nodes n6 and n5
from t=1s to t=16s. The rate used is 64 kb/s, which is the
VoIP standard. The UDP/CBR flow is placed in the WTFC
domain rather than in the TCP domain, so as not to let TCP
influence it. The assumption here is that QoS would be
otherwise provided (enforced) in the provider network by

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Figure 4. TCP to WTFC domain flow packet dynamics.

Figure 5. TCP to WTFC domain flow windows and proxy buffer

occupancy.

Figure 6. Packet dynamics in the event of induced packet loss.

Figure 7. WTFC to TCP domain flow packet dynamics.

Traffic Engineering (TE) under DiffServ paradigm.

A. TCP to WTFC domain flows
Packet flow dynamics for a TCP to WTFC domain flow

with the induced packet loss algorithm on TCP-WTFC proxy
buffer is shown in Figure 4. Slow start algorithm of the TCP
sender causes losses and disrupted flow of packets in the first
second of simulation time. In time intervals when the
competing flows are active the slope of the curve,
representing throughput, is reduced as expected. Calculated
throughput is shown in Figure 9 and discussed in Section C.

Window for TCP sender and proxy WTFC sender, as
well as TCP-WTFC proxy buffer occupancy are shown in
Figure 5. The value of the TCP sender window going to 240
packets at the beginning of the simulation is not shown in the
figure in order to limit the scale of the y-axis. TCP sender
window follows the additive increase-multiplicative decrease
(AIMD) rule of the TCP Reno algorithm, while proxy
WTFC sender keeps its window steady according to the
calculated optimal working point. Low TCP-WTFC proxy
buffer occupancy shows the efficiency of the applied
algorithm.

Packet dynamics in the event of an induced packet loss is

shown in Figure 6. The increasing latency between TCP
receive event and WTFC forward event on the proxy is due
to the increasing proxy buffer occupancy, eventually
resulting in induced packet loss and duplicated ACKs. After
the packet loss, the TCP window is halved by the TCP Reno
flow control algorithm. Consequently, there is a pause in
sending new packets. TCP-WTFC proxy buffer deque,
regulated by Proxy WTFC sender, remains steady.

B. WTFC to TCP domain flows
Packet flow dynamics for a WTFC to TCP domain flow

with WTFC-TCP proxy buffer ACK loopback and the proxy
TCP sender cwnd limiting algorithm is shown in Figure 7.
Performance observed is similar to that of Figure 4. The first
slope is smoother then in Figure 4 because WTFC sender
does not use the aggressive slow start algorithm. Optimal
working point is computed upon the arrival of the first ACK.

Window for WTFC sender and TCP proxy sender, as
well as WTFC-TCP proxy buffer occupancy are shown in
Figure 8. Low WTFC-TCP proxy buffer occupancy shows
the efficiency of the applied algorithm. Proxy TCP sender
window growth is limited to the number of packets in flight
plus the number of packets in proxy buffer plus 5. Therefore,
proxy TCP sender window is steady and following the
change of WTFC window when there is no congestion in

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Figure 8. WTFC to TCP domain flow windows and proxy buffer

occupancy.

Figure 9. Throughput using WTFC-TCP flow control proxy and using

standard TCP flow control.

Figure 10. Delay of a CBR flow using WTFC-TCP flow control proxy and

using standard TCP flow control.

Figure 11. Jitter (MAPDV2) of a CBR flow using WTFC-TCP flow control

proxy and using standard TCP flow control.

TCP domain. Otherwise it follows the TCP Reno AIMD
rule. The cwnd spike at t=2s shows that cwnd limiting
algorithm should be improved.

C. Throughput, delay and jitter
Simulation results presented in this section were obtained

with TCP to WTFC domain flows. Results with WTFC to
TCP domain flows are similar. Comparison is made with
results obtained when traditional TCP flow control is
deployed on the entire network. Topology used is the same
as with the WTFC-TCP proxy. Competing flows in this
TCP-all network are TCP Reno flows in both the time
interval from t=2s to t=6s and the time interval from t=10s to
t=14s. Additional simulations were conducted on the TCP-all
network with ARED algorithm on all links.

Throughput achieved by the TCP to WTFC domain flow
under observation is comparable to that of a standard TCP
Reno flow on the same topology, as well as on the topology
with only ARED; see Figure 9. It shows good channel
utilization when there is no competing traffic and fair
reaction when competing flows are present.

The property of WTFC to estimate the optimal working
point and to keep on average empty node buffers is expected

to result in some QoS metric improvements when using
WTFC to TCP flow control proxy, in comparison with
results using only traditional TCP flow control. For
verification, delay and jitter of VoIP traffic, represented by a
UDP/CBR flow between node n6 and node n5, are observed.

As expected, delay when using the WTFC-TCP flow
control proxy is generally smaller than delay on the
equivalent TCP-all network, both with just ARED and with
the combination of Drop Tail and ARED algorithms; see
Figure 10. Peak delay with the proxy is 60 ms and without
the proxy about 125 ms. While competing flows between
nodes n2 and n4 are active, delay with the proxy is stabilized
below 30 ms. In the same interval, delay of the TCP flow
with ARED has almost 10 times greater jitter and the delay
of the TCP flow with ARED and Drop Tail is near the peak
value.

Jitter estimator MAPDV2 according to ITU-T G.1020
Recommendation is used to compute the jitter. Results are
shown in Figure 11. Peak jitter value with the WTFC-TCP
flow control proxy is 20 ms, while the same value for TCP-
all flows exceeds 100 ms. The proxy reduces jitter in general
as well as the fluctuation of jitter values. While competing

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

flows in WTFC domain are active, jitter drops from peak
value to below 5 ms.

The UDP/CBR flow passes through the link between
nodes n2 and n3 together with the TCP to WTFC domain
flow and competing WTFC flows, or together with
equivalent TCP flows. Both delay and jitter have the lowest
values in the time interval from t=10s to t=14s when
competing flows in TCP domain are active. Congestion is
then present in the TCP domain, thus leaving the link
between nodes n2 and n3 unsaturated.

VI. CONCLUSION AND FUTURE WORK
In this paper, the concept of resolving the QoS at the

edge between access network and the Internet is explored
using WTFC flow control on the access network and
standard TCP on the Internet. The WTFC-TCP flow control
proxy is introduced in order to exploit the ability of WTFC
to estimate the optimal working point for the available
capacity and to keep on average empty node buffers.

A basic proxy model is defined, consisting of packet
queues in both WTFC and TCP domains. WTFC and TCP
flows are interconnected through proxy buffers located on
the proxy node.

In this scenario main flow control problems arise when
congestion is present on the receiver side of the model. In
this case some kind of flow control signalization is needed
between WTFC and TCP domains.

When a flow passes from TCP to WTFC domain, WTFC
congestion is signaled to TCP sender by induced single
packet loss. Proxy deliberately discards a packet when the
TCP to WTFC proxy buffer occupancy exceeds double value
of proxy WTFC sender congestion window. This way, the
TCP sender cwnd is halved. Simulation results have shown
that this simple mechanism operates efficiently.

In a scenario when a flow passes from WTFC to TCP
domain, congestion notification from TCP domain to WTFC
sender is obtained using delayed local WTFC
acknowledgments. These are sent at the moment when a
packet is taken from the WTFC to TCP proxy buffer.
Additional proxy TCP sender cwnd limiting algorithm is
used to prevent TCP from unnecessarily increasing cwnd
during congestion in WTFC domain. Simulation results have
shown that these two mechanisms combined provide
satisfactory performance.

Simulation results presented make the WTFC-TCP flow
control proxy concept promising for further research.
Throughput achieved is comparable to that of a TCP-all
network. Delay and jitter of a VoIP flow passing through the
WTFC domain were taken in consideration as QoS metrics.
They show considerable improvement over delay and jitter
on a TCP-all network. Future work includes expanding

algorithms with more sophisticated features as well as
conducting experiments on more complex topologies and in
wider condition range. Finally, the QoS for multimedia flows
in integrated environment with data traffic needs to be
extensively verified.

REFERENCES
[1] A. Bakre and B. R. Badrinath, “I-tcp: Indirect tcp for mobile hosts,”

in 15th International Conference on Distributed Computing Systems,
pp. 136–143, 1995.

[2] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst and M.
Sooriyabandara, “TCP Performance Implications of Network Path
Asymmetry,” IETF RFC 3449, Dec 2002.

[3] H. Balakrishnan, S. Seshan, E. Amir and R. H. Katz, “Improving
tcp/ip performance over wireless networks,” in 1st Annual
International Conference on Mobile Computing and Networking,
New York, NY, USA, 1995, pp. 2–11, ACM.

[4] J. Border, M. Kojo, J. Griner, G. Montenegro and Z. Shelby,
“Performance enhancing proxies intended to mitigate link-related
degradations,” IETF RFC 3135, June 2001.

[5] R. Chakravorty, S. Katti, I. Pratt and J. Crowcroft, “Using TCP flow-
aggregation to enhance data experience of cellular wireless user,”
IEEE Journal on Selected Areas in Communications, vol. 23, no. 6,
pp. 1190-1204, June 2005.

[6] S. Cheng, C. Guo, J. Li and L. Zhu, “Design and Analysis of an XCP-
TCP Gateway,” International Conference on Networking 2008
(ICOIN 2008), pp.1-5, Jan. 2008, doi: 10.1109/ICOIN.2008.4472746.

[7] D. Dutta and Y. Zhang, “An Active Proxy Based Architecture for
TCP in Heterogeneous Variable Bandwidth Networks,” Proc. IEEE
GLOBECOM 2001, pp. 2316 – 2320, November 2001.

[8] J. V. Jacobson, “Congestion Avoidance and Control,” Proc. ACM
SIGCOMM ’88, vol. 18, no.4, pp. 314-329, Stanford, USA, August
1988.

[9] D. Murray, T. Koziniec and M. Dixon, “Solving Ack Inefficiencies in
802.11 Networks,” Proceedings of the 3rd IEEE International
Conference on Internet Multimedia Services Architecture and
Applications IMSAA'09, pp. 1-6, 2009.

[10] J. Ozegovic, “Filtering schemes for the window-time space flow
control (WTFC),” Proc. ICCCN'00, pp. 575 - 580, Las Vegas 2000,
USA.

[11] J. Ozegovic, “Implementation algorithms for the window-time space
flow control (WTFC),” Proc. ICCCN'99, pp. 30 - 35, Boston 1999,
USA.

[12] J. Ozegovic, “Window-time space flow control (WTFC),” Proc.
ICCCN98, pp. 800 - 807, Lafayette 1998, USA.

[13] H. Shimonishi, T. Hama and T. Murase, “Tcp-adaptive reno for
improving efficiency-friendliness tradeoffs of tcp congestion control
algorithm,” PFLDnet, pp. 87–91, Feb. 2006.

[14] D. Velenis, D. Kalogeras and B. Maglaris, “SaTPEP: a TCP
Performance Enhancing Proxy for Satellite Links,” Proc. 2nd
International IFIP-TC6 Networking Conference on Networking
Technologies, Services, and Protocols; Performance of Computer and
Communication Networks; and Mobile and Wireless
Communications (NETWORKING '02), pp. 1233-1238, 2002.

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

